STEP: Out-of-distribution Detection in the Presence of Limited In-distribution Labeled Data

Zhi Zhou^{1*}, Lan-Zhe Guo^{1*}, Zhanzhan Cheng², Yu-Feng Li^{1†}, Shiliang Pu²

1 Nanjing University, Nanjing, China 2 Hikvision Research Institute, Hangzhou, China

What is this work about

OOD detection protects the **safety** of neural networks **in real-world applications**.

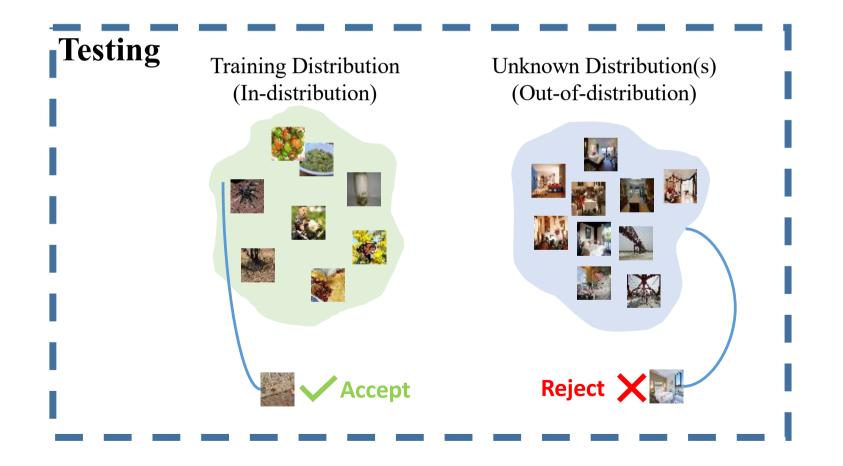
However, OOD detection in a semi-supervised fashion is underexplored, which challenges in the following two aspects:

- Labeled data is insufficient
- Unlabeled data is mixed with both in- and out-of-distribution samples

These two points meet the situation in real-world semi-supervised problems.

- ✓ In our work, we summarize a novel and practical semi-supervised out-ofdistribution detection setting and propose a STEP approach for this setting.
- ✓ Our proposal is clearly better than two baselines and the SOTA out-ofdistribution detection method evaluated by 4 metrics on 8 benchmark data sets.

• Motivation

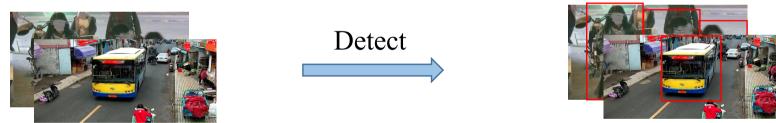

• STEP Approach

• Experiments

OOD Detection

OOD Detection: Decide whether a test sample is drawn from training data distribution or not.

Real Situations

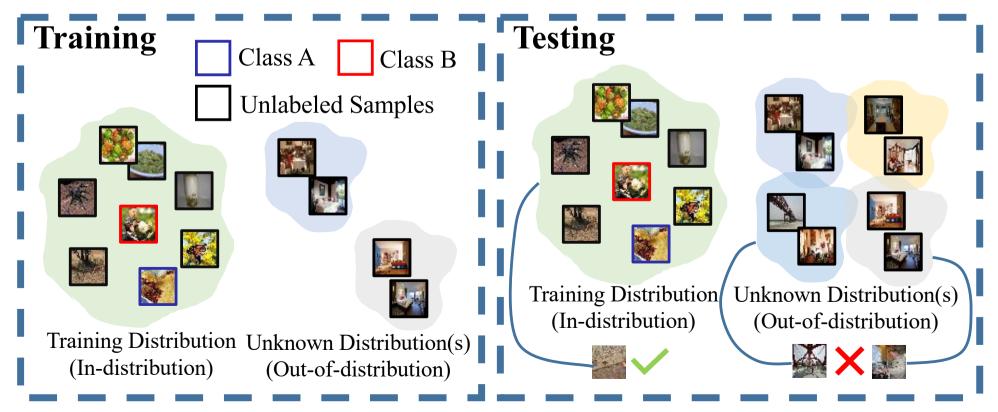

Targets

In many real-world applications:

- ✓ Labeled data is limited while the others remain unlabeled.
- \checkmark Unlabeled data is mixed with both in- and out-of-distribution samples.

For example: Video Security System in Hikvision

Frames of video


- Label is difficult to obtain as it requires manual verification. (Labeled data is limited)
- Millions of videos are generated every. Not all are guaranteed to be relevant. (Unlabeled data contains OOD samples)
- In different environments(e.g., foggy, sandy), the accuracy of the system is severely affected. (Detecting OOD samples is necessary)

Semi-supervised OOD Detection

Setting:

- Limited in-distribution labeled data
- Large amounts of unlabeled data drawn from both in- and out-ofdistribution
- Detecting OOD samples from both known unlabeled data and unknown testing data

• Motivation

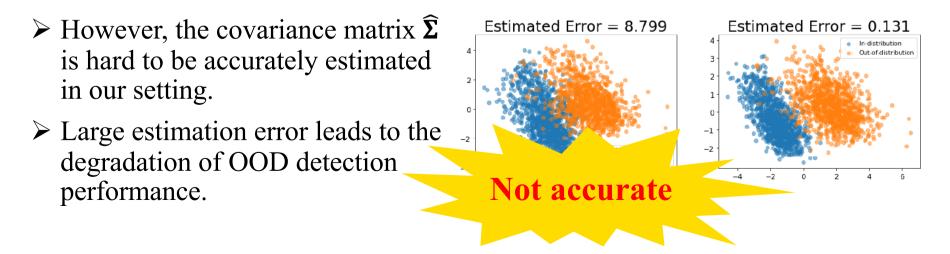
• STEP Approach

• Experiments

STEP Approach

A classical OOD detection method: Mahalanobis Distance

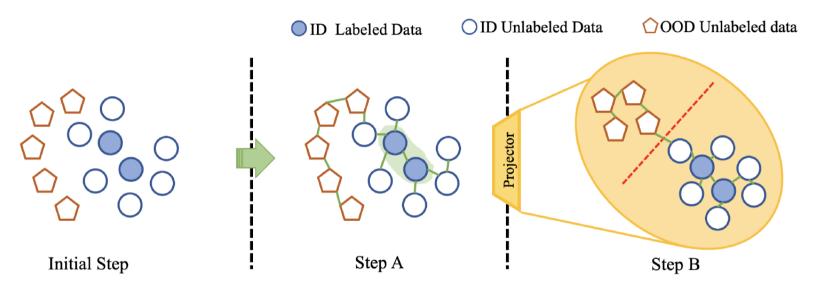
> Mahalanobis Distance between two samples x_i and x_j is defined as:


$$\mathcal{MD}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \sqrt{(\boldsymbol{x}_i - \boldsymbol{x}_j)^{\mathsf{T}} \widehat{\boldsymbol{\Sigma}}^{-1} (\boldsymbol{x}_i - \boldsymbol{x}_j)}$$

where $\widehat{\Sigma}$ is the covariance matrix estimated on all in-distribution samples.

> The OOD detection confidence score of a testing sample x is defined as:

$$Score_{\mathcal{MD}}(\mathbf{x}) = \min_{c \in \{c_1, c_2, \dots, c_k\}} \mathcal{MD}(\mathbf{x}, \boldsymbol{\mu}_c)$$


where μ_c denotes the center of samples that belong to class *c*.

STEP Approach

Learning to project samples into space where a large margin separates ID samples and OOD samples.

Inspired by the topological technology and cluster assumption, we want to project the sample into a space that satisfies the following constraints:

$$\begin{array}{ll} \max_{\mathbf{P}} & \sum_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{D}_l \cup \mathcal{D}_u} \| \mathbf{P} \mathbf{x}_i - \mathbf{P} \mathbf{x}_j \|_2 \\ \text{s.t.} & \| \mathbf{P} \mathbf{x}_i - \mathbf{P} \mathbf{x}_n \|_2 = \mathcal{M} \mathcal{D}(\mathbf{x}_i, \mathbf{x}_n), \\ \text{if} & \mathbf{x}_n \in \mathcal{B}_k(\mathbf{x}_i) \end{array}$$

where $\mathcal{B}_k(\mathbf{x}_i)$ is the set of k nearest neighbours of \mathbf{x}_i .

STEP Approach

We define L_{Keep} and L_{Unzip} that can be directly optimized to approximately achieve our objective:

$$\begin{cases} L_{Keep} &= \max(0, \|\mathbf{P}\mathbf{x}_i - \mathbf{P}\mathbf{x}_n\|_2 - \mathcal{MD}(\mathbf{x}_i, \mathbf{x}_n)), \\ L_{Unzip} &= -\|\mathbf{P}\mathbf{x}_i - \mathbf{P}\mathbf{x}_j\|_2. \end{cases}$$

> Minimum L2 distance can be directly used as the confidence score:

$$\mathcal{N}(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{P}\mathbf{x}_i - \mathbf{P}\mathbf{x}_j\|_2$$
$$Score(\mathbf{x}) = \min_{c \in \{c_1, c_2, \dots, c_K\}} \mathcal{N}(\mathbf{x}, \boldsymbol{\mu}_c)$$

where μ_c denotes the center of samples which belong to class *c*.

• Motivation

• STEP Approach

• Experiments

Setup

8 benchmark data sets

- > 2 In-distribution data sets:
 - CIFAR-10
 - CIFAR-100
- ➤ 4 Out-of-distribution data sets:
 - TINc, TINr
 - LSUNC, LSUNC

5 metrics

- ✓ AUROC
- ✓ FPR at 95% TPR
- ✓ Detection Error
- ✓ AUPR-In
- ✓ AUPR-Out

Compared Methods

□ ODIN [Liang et al., ICLR 2018]

□ Mahalanobis [Lee et al., NeurIPS 2018]

□ Unsupervised OOD Detection [Yu et al., ICCV, 2019]

Results on Benchmarks

Experiment results evaluated by AUROC and FPR.

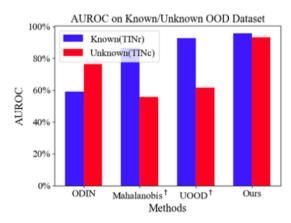
Metrics	ID Dataset	OOD Dataset	Odin	Mah †	Uood	Uood †	Step
AUROC →	Cifar10	TINc TINr LSUNc LSUNr	$\begin{array}{c} 81.00 \pm 6.30 \\ 59.10 \pm 2.08 \\ 76.17 \pm 5.37 \\ 69.05 \pm 3.49 \end{array}$	87.67 ± 2.47 86.88 ± 0.87 97.68 ± 0.09 90.41 ± 1.00	90.46 ± 9.74 84.67 ± 9.41 96.92 ± 2.04 80.87 ± 24.45	$\begin{array}{c} 99.07 \pm 0.48 \\ 92.63 \pm 3.42 \\ 98.79 \pm 0.67 \\ 97.81 \pm 0.94 \end{array}$	$\begin{array}{c} 99.99 \pm 0.00 \\ 95.61 \pm 0.36 \\ 99.99 \pm 0.00 \\ 99.07 \pm 0.20 \end{array}$
	Cifar100	TINC TINr LSUNC LSUNr	$\begin{array}{c} 61.65 \pm 6.71 \\ 54.46 \pm 0.74 \\ 46.99 \pm 4.99 \\ 52.06 \pm 2.24 \end{array}$	$\begin{array}{c} 71.15 \pm 2.20 \\ 73.94 \pm 1.79 \\ 93.91 \pm 3.41 \\ 78.45 \pm 1.11 \end{array}$	$\begin{array}{c} 98.34 \pm 1.57 \\ 84.80 \pm 8.87 \\ 97.49 \pm 1.48 \\ 97.61 \pm 0.55 \end{array}$	$\begin{array}{c} 98.84 \pm 0.83 \\ \textbf{95.31} \pm \textbf{0.93} \\ 99.31 \pm 0.62 \\ \textbf{98.96} \pm \textbf{0.40} \end{array}$	$\begin{array}{c} \textbf{99.99} \pm \textbf{0.01} \\ 93.51 \pm 1.17 \\ \textbf{99.99} \pm \textbf{0.00} \\ 98.20 \pm 0.56 \end{array}$
FPR at 95%TPR ←	0 Cifar10	TINc TINr LSUNc LSUNr TINc	$53.37 \pm 10.55 \\89.76 \pm 1.45 \\64.06 \pm 9.12 \\76.89 \pm 5.04 \\84.24 \pm 8.02$	$\begin{array}{r} 44.17 \pm 6.43 \\ 58.57 \pm 3.09 \\ 7.73 \pm 0.46 \\ 45.41 \pm 3.87 \\ 90.15 \pm 1.99 \end{array}$	$\begin{array}{c} 29.35 \pm 30.05 \\ 31.72 \pm 11.50 \\ 6.59 \pm 3.22 \\ 32.69 \pm 31.93 \\ \overline{5.22 \pm 5.59} \end{array}$	$\begin{array}{c} 2.75 \pm 1.65 \\ 19.61 \pm 9.50 \\ 3.56 \pm 1.93 \\ 6.49 \pm 2.89 \\ 3.16 \pm 2.25 \end{array}$	$\begin{array}{c} \textbf{0.00} \pm \textbf{0.00} \\ \textbf{17.63} \pm \textbf{1.10} \\ \textbf{0.00} \pm \textbf{0.00} \\ \textbf{4.48} \pm \textbf{1.02} \\ \hline \textbf{0.00} \pm \textbf{0.01} \end{array}$
	Cifar100	TINr LSUNc LSUNr	90.10 ± 0.02 90.10 ± 0.46 93.49 ± 2.42 89.79 ± 0.79	$\begin{array}{c} 80.55 \pm 1.89 \\ 24.93 \pm 21.75 \\ 69.69 \pm 2.42 \end{array}$	$\begin{array}{c} 29.09 \pm 15.68 \\ 6.24 \pm 3.80 \\ 4.92 \pm 1.33 \end{array}$	$\begin{array}{c} \textbf{11.10} \pm \textbf{4.21} \\ \textbf{1.93} \pm \textbf{2.43} \\ \textbf{2.39} \pm \textbf{0.74} \end{array}$	$\begin{array}{c} \textbf{0.00} \pm \textbf{0.01} \\ \textbf{23.21} \pm \textbf{4.14} \\ \textbf{0.00} \pm \textbf{0.00} \\ \textbf{8.25} \pm \textbf{3.14} \end{array}$

STEP gives **the best result** on benchmark datasets, and still give **competitive results** even if the result is not the best.

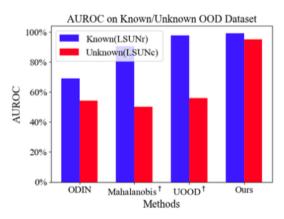
Results on Benchmarks

Experiment results evaluated by Detection Error, AUPR-In and AURP-Out.							
Detection Error ←	Cifar10	TINc TINr LSUNc LSUNr	$\begin{array}{c} 25.53 \pm 4.67 \\ 43.04 \pm 1.48 \\ 29.57 \pm 3.82 \\ 35.52 \pm 2.46 \end{array}$	$\begin{array}{c} 19.93 \pm 2.63 \\ 20.14 \pm 0.82 \\ 6.28 \pm 0.25 \\ 16.23 \pm 0.95 \end{array}$	$\begin{array}{c} 11.59 \pm 11.35 \\ 18.07 \pm 5.55 \\ 4.20 \pm 2.12 \\ 18.40 \pm 15.68 \end{array}$	$\begin{array}{c} 2.54 \pm 1.27 \\ 11.71 \pm 4.56 \\ 2.58 \pm 1.32 \\ 4.99 \pm 1.91 \end{array}$	$\begin{array}{c} \textbf{0.12} \pm \textbf{0.01} \\ \textbf{10.77} \pm \textbf{0.52} \\ \textbf{0.11} \pm \textbf{0.01} \\ \textbf{4.66} \pm \textbf{0.57} \end{array}$
	Cifar100	TINc TINr LSUNc LSUNr	$\begin{array}{c} 40.95 \pm 5.07 \\ 46.36 \pm 0.56 \\ 48.47 \pm 1.61 \\ 46.73 \pm 0.66 \end{array}$	$\begin{array}{c} 32.58 \pm 1.64 \\ 31.09 \pm 1.44 \\ 11.20 \pm 3.73 \\ 27.33 \pm 1.03 \end{array}$	3.67 ± 3.62 16.53 ± 7.87 4.24 ± 2.34 3.11 ± 0.78	$\begin{array}{c} 2.76 \pm 1.00 \\ \textbf{6.88} \pm \textbf{2.33} \\ 2.06 \pm 1.54 \\ \textbf{1.90} \pm \textbf{0.51} \end{array}$	$\begin{array}{c} \textbf{0.32} \pm \textbf{0.06} \\ 13.26 \pm 1.61 \\ \textbf{0.23} \pm \textbf{0.04} \\ 6.40 \pm 1.32 \end{array}$
AUPR-In →	Cifar10	TINc TINr LSUNc LSUNr	$\begin{array}{c} 76.80 \pm 8.20 \\ 57.10 \pm 2.11 \\ 72.16 \pm 6.60 \\ 65.37 \pm 3.39 \end{array}$	$\begin{array}{c} 85.35 \pm 2.86 \\ 86.79 \pm 1.17 \\ 96.70 \pm 0.21 \\ 89.93 \pm 1.23 \end{array}$	$\begin{array}{c} 89.31 \pm 10.05 \\ 79.02 \pm 12.17 \\ 94.78 \pm 4.07 \\ 79.41 \pm 19.89 \end{array}$	$\begin{array}{c} 98.59 \pm 0.67 \\ 88.72 \pm 4.93 \\ 98.31 \pm 0.92 \\ 96.86 \pm 1.27 \end{array}$	$\begin{array}{c} 99.99 \pm 0.00 \\ 94.71 \pm 0.51 \\ 100.00 \pm 0.00 \\ 99.02 \pm 0.20 \end{array}$
	Cifar100	TINc TINr LSUNc LSUNr	$\begin{array}{c} 58.29 \pm 5.01 \\ 52.96 \pm 0.59 \\ 47.41 \pm 2.86 \\ 50.47 \pm 1.75 \end{array}$	$71.18 \pm 2.69 \\70.95 \pm 2.20 \\92.26 \pm 2.17 \\74.22 \pm 1.14$	$\begin{array}{c} 97.55 \pm 2.04 \\ 77.32 \pm 9.81 \\ 95.45 \pm 2.32 \\ 95.53 \pm 0.95 \end{array}$	$\begin{array}{c} 98.24 \pm 1.50 \\ 91.67 \pm 1.29 \\ 99.09 \pm 0.88 \\ \textbf{98.11} \pm \textbf{0.78} \end{array}$	$\begin{array}{c} \textbf{99.99} \pm \textbf{0.01} \\ \textbf{91.91} \pm \textbf{1.34} \\ \textbf{99.99} \pm \textbf{0.00} \\ \textbf{98.07} \pm \textbf{0.52} \end{array}$
AUPR-Out →	Cifar10	TINc TINr LSUNc LSUNr	$\begin{array}{c} 83.63 \pm 5.11 \\ 58.83 \pm 1.77 \\ 78.43 \pm 5.12 \\ 70.51 \pm 3.97 \end{array}$	$\begin{array}{c} 88.67 \pm 2.28 \\ 84.26 \pm 0.95 \\ 98.16 \pm 0.12 \\ 88.84 \pm 1.20 \end{array}$	$\begin{array}{c} 91.34 \pm 8.69 \\ 89.21 \pm 6.22 \\ 98.01 \pm 1.18 \\ 84.45 \pm 21.48 \end{array}$	$\begin{array}{c} 99.32 \pm 0.35 \\ 94.60 \pm 2.70 \\ 99.14 \pm 0.48 \\ 98.41 \pm 0.70 \end{array}$	$\begin{array}{c} 99.99 \pm 0.00 \\ 96.31 \pm 0.28 \\ 99.99 \pm 0.00 \\ 99.14 \pm 0.19 \end{array}$
	Cifar100	TINc TINr LSUNc LSUNr	$\begin{array}{c} 62.88 \pm 7.90 \\ 55.94 \pm 0.71 \\ 49.91 \pm 4.42 \\ 55.18 \pm 1.56 \end{array}$	$\begin{array}{c} 65.14 \pm 2.21 \\ 71.57 \pm 1.71 \\ 93.77 \pm 5.30 \\ 78.19 \pm 1.33 \end{array}$	$\begin{array}{c} 98.77 \pm 1.23 \\ 89.44 \pm 6.96 \\ 98.33 \pm 0.99 \\ 98.49 \pm 0.37 \end{array}$	$\begin{array}{c} 99.08 \pm 0.51 \\ \textbf{96.84} \pm \textbf{0.82} \\ 99.39 \pm 0.48 \\ \textbf{99.32} \pm \textbf{0.24} \end{array}$	$\begin{array}{c} \textbf{99.99} \pm \textbf{0.01} \\ 94.66 \pm 1.07 \\ \textbf{99.99} \pm \textbf{0.00} \\ 98.35 \pm 0.56 \end{array}$

Other Results



Ablation Study


	Diffe	erent parts of S	Data set pair		
MAH	KNN	Unzipping	Sturture-Keep	Cifar10-TINr	Cifar10-LSUNr
\checkmark				90.96 ± 0.28	93.46 ± 0.51
\checkmark	\checkmark			91.26 ± 1.74	97.35 ± 0.45
\checkmark	\checkmark	\checkmark		79.58 ± 0.69	80.38 ± 0.95
\checkmark	\checkmark	\checkmark	\checkmark	95.62 ± 0.39	99.07 ± 0.20

The four components proposed in this STEP can only get the best results if they are integrated.

The STEP approach gives a very high and relatively close performance on both known and unknown OOD data sets, which shows strong generalization.

Generalization of OOD Detection

Other experiments can be found in our paper and supplementary materials.

• Motivation

• STEP Approach

• Experiments

Conclusions

In this paper, we consider a **novel** and **realistic** setting: **Semi-supervised Out-of-distribution Detection**

- A novel OOD detection setting with realistic applications
 A simple yet effective STEP approach
- $\checkmark~$ Extensive experiments demonstrate the effectiveness of STEP

Future work

Imbalances problems may emerge in real applications

Thank you!

If you are interested in, feel free to contact me: Zhi Zhou (zhouz@lamda.nju.edu.cn)

https://github.com/WNJXYK/Step