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OPT Problem Setting

Definition

As 1llustrated 1n Figure 1, the Open-world Prompt Tuning (OPT)
problem 1nvolves tfuning with only base class samples available, yet
requiring classification of both base class and new class samples
during testing, with performance evaluated using accuracy metric.
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A Figure 1: The overall illustration of OPT problem
Motivation

I.  The requirements to recognize new class samples emerges 1n real-
world applications, the , and these samples cannot be 1dentified as
a new class before testing.

2. The performance of H and accuracy metrics are inconsistent. Left
subfigure of Figure 2 demonstrates that the improvement in the H
metric corresponds to reduced accuracy, while right subfigure
shows a deterioration in H 1s associated with increased accuracy.
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A Figure 2: Performance changes of different metrics

Challenges

[. Existing methods and evaluating metrics ignore the base-to-new
discriminability, 1.e., distinguishing whether a testing sample
belongs to base classes and new classes. As shown 1n Figure 3,
prompt tuning methods will degrades base-to-new discriminability.

2. New-class discriminability degrades for prompt tuning methods,

making the prompt tuning not robust, as shown in Figure 4.
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A Figure 3: Base-to-new
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DePt and DeCoOp Approach

DePt Framework

We propose a Decomposed Prompt Tuning (DePt) framework, which
integrates a zero-shot baseline P,¢, a prompt tuning baseline Ppr, and
an OOD detector Pyyp using the following formulation. The main 1dea
1s to distinguish OOD samples and let zero-shot and prompt tuning
methods handle the base classes and new classes respectively,

PPT(y Z’),
PZS(y :13),

Theoretical Analysis of DePt

We prove that the DePt framework can achieve better performance
compared to the zero-shot baseline, measuring their error using the
Cross-entropy metric.

Poop(y € Wblx) > Poop(y € Wa|x),
Poop(y € v|T) < Poop(y € Ihl|x).

< 0 for x belonging to \
Hgl(x)| <6 — Aforwx
belonging to base classes, and Eo |Hp P ()| < €, given a
uniform mixing ratio (o : 1 — «) of base classes and new

classes in the testing data, we can determine that:
Em [HZS (CB)] < €+ 57
E:B [HDEPT(m)] S € T 5 — - A

/ Theorem 2.1. If E, |H5S ()
both base and new classes, [E,

\_ /

DeCoOp Approach

Motivated by DePt framework, we propose a Decomposed Context
Optimization (DeCoOp) approach, shown 1n Figure 5. The main 1dea
1s to train better OOD detector Mp using the leave-out strategy and
train classifiers M for stronger generalization for new classes based
on DePt framework. The leave-out strategy address the challenge of
lacking knowledge of new classes during training. The stronger
generalization of M 1s achieved by simulating the emergence of new
categories during training with the help of leave-out strategy.
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A Figure 5: The overall illustration of DeCoOp approach

Can the empirical results o
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Experiments

Research Question #1

conform to our theoretical analysis?

Research Question #2

VIT-B/16 VIT-B/32
METHOD
NEW AcCcC. ACCURACY | NEw AcC. ACCURACY
/S 65.49 63.92 63.95 60.36
PT 57.73 65.57 53.01 61.03
DEPT 68.15 68.03 65.45 62.92

A Table 1:Performance of DePt framework

We investigate a new problem setting OPT and propose DeCoOp to explore integrating out-of-distribution detection into the prompt tuning paradigm.

" the DePt framework on real-world datasets

Can the DeCoOp method surpass existing baseline and SOTA methods,
thereby demonstrating its robustness?

AVERAGE IMAGENET CALTECHI101 OXFORDPETS

H Acc. H AccC. H AcCC. H AccC.
CLIP 70.84 63.92 70.20 £ 0.00 66.73 £+ 0.00 95.41 £0.00 92904 0.00 | 92.93 4+ 0.00 88.03 = 0.00
PROMPT ENS. 71.65 65.39 72.00 £ 0.00 68.48 = 0.00 96.20 £ 0.00 94.08 =0.00 | 92.42 £+ 0.00 86.37 £ 0.00
CoOrpr 72.14 65.57 6495+t 1.11 61.79 +£1.09 95.96 £ 0.39 93.24 4+ 0.68 | 95.38 £ 0.33 89.61 = 0.34
CoCoOrp 74.772 67.67 72.71 £0.33 69.41 £0.36 95.55+£0.24 93.434+£0.37 | 95.71 £ 0.76 90.24 + 1.32
SHIP 72.26 64.51 67.29 £0.38 63.65 1+ 0.32 95.83 £0.23 9293 4+£0.37 | 94.44 + 0.54 86.78 £ 1.32
DECOOP(OURS) 76.13 69.69 72.98 + 0.04 69.62 + 0.08 96.52 £ 0.09 94.50 £ 0.22 | 95.27 £ 0.08 88.87 = 0.28

STANDFORDCARS FLOWERS102 Foopl101 FGVCAIRCRAFT

H Acc. H AccC. H AccC. H AccC.
CLIP 68.75 +£0.00 65.394+0.00 | 72.74 £0.00 67.28 £0.00 90.18 = 0.00 85.40 &= 0.00 | 30.25 £ 0.00 23.94 £+ 0.00
PROMPT ENS. 69.36 2 0.00 65954+0.00 | 72.14 £0.00 67.03 £0.00 90.32 £ 0.00 85.54 +0.00 | 29.42 £+ 0.00 23.31 £0.00
CoOp 68.22+0.49 63.81+0.44 | 7833 +£2.26 72.11 £2.36 86.65+1.38 80.84 +£1.50 | 29.38 +1.78 24.80 £ 1.23
CoCoOrpr 71.49 £0.62 67.75+0.68 | 80.04+1.46 71.95+1.24 90.41 £0.24 85.61 £0.43 | 27.87 =£11.36 21.46 +£7.42
SHIP 69.71 £0.43 64.67 £0.55 | 76.85 +£2.18 70.40 = 2.01 86.84+1.49 77.39+£2.19 | 27.13 £1.10 24.44 + 0.96
DECoOOP(OURS) | 73.24 = 0.15 69.64 = 0.19 | 84.16 = 0.27 78.61 £+ 0.59 90.68 £ 0.09 85.83 +0.07 | 31.44 + 0.39 25.15 £ 0.31

SUN397 DTD EUROSAT UCF101

H Acc. H Acc. H AccC. H AccC.
CLIP 72.26 £ 0.00 62.57 +£0.00 | 57.32 4+ 0.00 44.56 &£ 0.00 58.16 2 0.00 41.40+=0.00 | 71.00 £ 0.00 64.97 £ 0.00
PROMPT ENS. 75.04 £ 0.00 65.97 £0.00 | 59.63 £0.00 46.28 &£ 0.00 58.454+0.00 48.91 +0.00 | 73.17 £ 0.00 67.33 £0.00
CoOp 71.37 +1.21 61.82+1.11 | 57.22 £2.37 48.18 £ 1.78 74.33 £24.35 59.65+5.07 | 71.68 + 2.84 65.41 &+ 2.18
CoCoOrpr 77.17 £0.27 68.17+£0.33 | 60.59 +1.51 47.90+1.43 73.77 £3.58 58.08+1.49 | 76.59 +0.79 70.39 = 1.25
SHIP 72.57 £0.38 60.42+0.48 | 56.82+2.18 47.58 £1.62 73.29 £2.67 54.11 +£1.73 | 74.09 + 2.09 67.24 £ 1.94
DECoOP(OURS) | 78.11 = 0.09 69.33 +0.05 | 62.72 +1.23 51.44 +1.04 74.61 + 3.82 61.90 +=3.72 | 77.67 + 0.50 71.71 £ 0.79

Research Question #3
Does the DeCoOp successful

A Table 2: Performance of DeCoOp approach
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ly improve the base-to-new discriminability?

ImageNet

£ Pz — |4 7 A= = DATASET CLIP CoCoOP SHIP DECOOP(OURS)
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A Figure 6: AUROC of

OOD detection A Table 3: AUROC of OOD detection

v If you are interested in this paper, please feel free to contact Zhi
Zhou (zhouz@lamda.nju.edu.cn) or visit our project homepage for
more details (https://wnjxyk.github.10/DeCoOp) .

[=]

v" This research was supported by National Science and F
Technology Major Project (20227D0114803) and the
National Science Foundation of China (62306133,
62176118).




