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TL; DR We introduce the first theoretical framework for LLM reasoning, and bridge two test-time scaling methods to achieve both low error and fast convergence.

Theoretical Framework and Insights
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🕵 Contribution #1: We introduce the first theoretical framework for LLM reasoning in the context of
confidence estimation, which evaluates the provided !𝒑 !𝒚 𝒙) for each candidate answer !𝒚.
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First, the reasoning error for each candidate answer $𝑦 is defined based
on its confidence estimation and correctness as follows:

according to the conditional probability distribution p(ti |x, t<i), where m denotes the length of the
reasoning path. The probability of generating the reasoning path t̂ is defined as p(t̂ |x), a.k.a the
confidence of the reasoning path t̂. An extraction function g(·) maps the reasoning path to the final
answer ŷ = g(t̂). We can further extend the probability to the answer ŷ, i.e., the answer confidence,
denoted as p(ŷ |x). Take the mathematical reasoning problem as an example, the reasoning path t̂

could be “1 + 1 = 2. The answer is 2.” and the function g(·) extracts the answer from t̂, resulting in
ŷ = g(t̂) = 2. The reasoning correctness is evaluated by the indicator function I[ŷ = y].

The confidence represents the probability that the reasoning path t̂ or answer ŷ is correct, allowing
LLMs to select the most reliable solution from multiple candidates in the Best-of-N manner [20, 29].
However, in practice, accessing the confidence for all possible reasoning paths or answers of LLMs
is computationally infeasible. Therefore, we typically estimate the confidence by sampling finite n

reasoning paths t̃1, . . . , t̃n from the LLM sampling distribution p(t |x), which yields the estimated
confidence p̂(t̂ |x) or p̂(ŷ |x) for any reasoning path t̂ or answer ŷ.

To measure the reasoning performance of LLMs, we use the squared error [22] to penalize reasoning
error of confidence for any single reasoning path t̂ or answer ŷ:

Ep̂(t̂) = E
[(
p̂(t̂ |x)→ I[g(t̂) = y]

)2]
, Ep̂(ŷ) = E

[(
p̂(ŷ |x)→ I[ŷ = y]

)2]
. (1)

where the expectation is taken over all possible combinations of n sampled reasoning paths t̃1, . . . , t̃n,
which are used to estimate the confidence p̂. For notational clarity and simplicity, we omit the explicit
form of expectation here and throughout the remainder of the paper.

In the following analysis, we categorize sampling-based test-time scaling methods into two types
based on confidence estimation aspects: consistency-based methods and probability-based methods.
Consistency-based methods [63, 72] estimate confidence by evaluating the agreement among different
reasoning paths, with self-consistency [57] serving as a representative approach. Probability-based
methods [20, 10] estimate confidence using either the internal probability provided by the LLM or
the scores from external models, with perplexity [57] being a representative example. Our further
analysis is conducted on each representative method.

2.2 Theoretical Analysis

In this section, we theoretically decompose the reasoning error into estimation error and model
error. Next, we examine the specific forms of reasoning error for two representative methods,
self-consistency (SC) and perplexity (PPL), to provide insights for improved algorithm design.

2.2.1 Reasoning Error Decomposition

Take the reasoning error Ep̂(ŷ) of p̂(ŷ |x) in Equation 1 as an example, we can decompose the
reasoning error into the estimation error and model error as follows.
Proposition 1 (Error Decomposition). For any input x with ground-truth answer y and any possible

answer ŷ, let p̂(ŷ |x) denote the unbiased estimated confidence of ŷ and p(ŷ |x) denote the ground

truth confidence. Then, the reasoning error Ep̂(ŷ) can be divided into two components:

Ep̂(ŷ) = E
[(
p̂(ŷ |x)→ p(ŷ |x)

)2]

︸ ︷︷ ︸
Estimation Error

+
(
p(ŷ |x)→ I[ŷ = y]

)2
︸ ︷︷ ︸

Model Error

, (2)

where the expectation is taken over sampled reasoning paths t̃1, . . . , t̃n for estimating confidence.

Remark 1. The detailed proof is provided in Appendix A.1. Proposition 1 separates the effect of
confidence estimation on reasoning error from the effect of the LLM’s reasoning capability. The
Estimation Error depends solely on the sampling size and the confidence estimation strategy, while
the Model Error is invariant and determined by the LLM’s reasoning capability. This proposition
demonstrates that, apart from the fixed Model Error, which is determined by the LLM’s inherent rea-
soning capability, the reasoning error is bounded by the Estimation Error. Moreover, this proposition
provides insights into two directions for improving LLM reasoning performance: (1) reducing the
Estimation Error through larger sampling sizes or more accurate confidence estimation methods, and
(2) reducing the Model Error by enhancing the LLM’s reasoning capabilities or developing more
sophisticated and effective confidence metrics.
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, Ep̂(ŷ) = E

[(
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Then, the reasoning errors are decomposed into two components: the
estimation error and the model error:

where the estimation error is related only to the estimation algorithm,
while the model error is related only to the LLM itself.

Decomposition of Reasoning Error

Self-consistency (SC) adopts Monte Carlo estimation:

SC only achieves a linear convergence rate of the estimation error
corresponding to the sampling size, which results in substantial
reasoning error when sampling is limited.

Analysis of Self-Consistency
Perplexity (PPL) uses internal probability as confidence:

The estimation error of PPL decreases exponentially, but the rate
depends on the value of the ground-truth confidence; the model error of
PPL is not satisfactory due to ignoring parsing function 𝑔 ⋅ .

Analysis of Perplexity

Next, we analyze two representative methods in sampling-based test-time scaling: self-consistency
(SC) from consistency-based methods and perplexity (PPL) from probability-based methods, using
our theoretical framework. Below, we adopt a common assumption that LLM sampling follows a
Bernoulli distribution [55], allowing us to compute the estimation error for specific methods.

2.2.2 Analysis of Self-Consistency

Self-consistency [60, 1, 4] is the representative method for consistency-based methods, which samples
n reasoning paths t̃1, . . . , t̃n, and estimates the confidence of any ŷ using Monte-Carlo estimation by

p̂
(SC)(ŷ |x) = 1

n

n∑

i=1

I[ỹi = ŷ], ỹi = g(t̃i). (3)

Then, the reasoning error of SC for a given problem (x, y) and any possible ŷ can be computed by

Ep̂(SC)(ŷ) = E
[
( 1
n

n∑

i=1

I[ỹi = ŷ]→ I[ŷ = y]
)2
]
. (4)

Finally, we conduct decomposition on SC to illustrate the key factors affecting the reasoning error.
Proposition 2 (SC Reasoning Error Decomposition). For any input x with ground-truth answer y,

let p̂
(SC)(ŷ |x) denote the estimated probability for any possible answer ŷ by SC. Then, the reasoning

error Ep̂(SC)(ŷ) can be divided into two components:

Ep̂(SC)(ŷ) =
1

n
p(ŷ |x)(1→ p(ŷ |x))

︸ ︷︷ ︸
Estimation Error

+
(
p(ŷ |x)→ I[ŷ = y]

)2
︸ ︷︷ ︸

Model Error

.
(5)

Remark 2. The detailed proof is provided in Appendix A.1. This proposition reveals that the
estimation error of SC consists solely of variance since the sampling is unbiased. It decreases only
linearly with increasing sample size, which results in substantial reasoning error when sampling is
limited. This analysis suggests that a promising direction for improving SC is to develop methods
that achieve faster estimation error convergence rates.

2.2.3 Analysis of Perplexity

Perplexity is a representative method for probability-based methods that directly utilizes the internal
LLM probability p(t̂ |x) for any reasoning path t̂. However, since the number of possible reasoning
paths is nearly infinite, the ground-truth probability can only be accessed for those paths that are
actually sampled. Therefore, the estimated probability of any possible reasoning path t̂ is estimated
using the unique set of n sampled reasoning paths R = Set

(
t̃1, . . . , t̃n

)
.

p̂
(PPL)(t̂ | x) =

{
p(t̃i |x), if t̂ = t̃i,

0, otherwise. =
∑

t̃→R

I
[
t̂ = t̃

]
p(t̃ |x). (6)

Similarly, the reasoning error of PPL is denoted as follows, with the following proposition decompos-
ing the reasoning error of PPL.

Ep̂(PPL)(t̂) = E



(
∑

t̃→R

I
[
t̂ = t̃

]
p(t̃ |x)→ I[g(t̂) = y]

)2


 . (7)

Proposition 3 (PPL Reasoning Error Decomposition). For any given input x with ground-truth

answer y, let p̂
(PPL)(t̂ |x) denote the estimated probability of t̂ by PPL method for any possible

reasoning path t̂. Then, the reasoning error Ep̂(PPL)(t̂) can be divided into two components:

Ep̂(PPL)(t̂) = (1→ p(t̂ |x))np(t̂ |x)(2I[ŷi = y]→ p(t̂ |x))︸ ︷︷ ︸
Estimation Error

+
(
p(t̂ |x)→ I[g(t̂) = y]

)2
︸ ︷︷ ︸

Model Error

. (8)
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)2
︸ ︷︷ ︸

Model Error

.
(5)

Remark 2. The detailed proof is provided in Appendix A.1. This proposition reveals that the
estimation error of SC consists solely of variance since the sampling is unbiased. It decreases only
linearly with increasing sample size, which results in substantial reasoning error when sampling is
limited. This analysis suggests that a promising direction for improving SC is to develop methods
that achieve faster estimation error convergence rates.

2.2.3 Analysis of Perplexity

Perplexity is a representative method for probability-based methods that directly utilizes the internal
LLM probability p(t̂ |x) for any reasoning path t̂. However, since the number of possible reasoning
paths is nearly infinite, the ground-truth probability can only be accessed for those paths that are
actually sampled. Therefore, the estimated probability of any possible reasoning path t̂ is estimated
using the unique set of n sampled reasoning paths R = Set

(
t̃1, . . . , t̃n

)
.

p̂
(PPL)(t̂ | x) =

{
p(t̃i |x), if t̂ = t̃i,

0, otherwise. =
∑

t̃→R

I
[
t̂ = t̃

]
p(t̃ |x). (6)

Similarly, the reasoning error of PPL is denoted as follows, with the following proposition decompos-
ing the reasoning error of PPL.

Ep̂(PPL)(t̂) = E



(
∑

t̃→R

I
[
t̂ = t̃

]
p(t̃ |x)→ I[g(t̂) = y]

)2


 . (7)

Proposition 3 (PPL Reasoning Error Decomposition). For any given input x with ground-truth

answer y, let p̂
(PPL)(t̂ |x) denote the estimated probability of t̂ by PPL method for any possible

reasoning path t̂. Then, the reasoning error Ep̂(PPL)(t̂) can be divided into two components:

Ep̂(PPL)(t̂) = (1→ p(t̂ |x))np(t̂ |x)(2I[ŷi = y]→ p(t̂ |x))︸ ︷︷ ︸
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(SC)(ŷ |x) = 1

n

n∑

i=1
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(SC)(ŷ |x) denote the estimated probability for any possible answer ŷ by SC. Then, the reasoning
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Figure 1: Illustration of the RPC approach. The Reasoning Pruning filters out low-probability
answers, while the Perplexity Consistency incorporates LLM probabilities into the self-consistency
framework, resulting in faster convergence of estimation error.

Remark 3. The detailed proof is provided in Appendix A.1. Compared with SC, the estimation error
of PPL decreases exponentially, with the rate depending on the magnitude of ground-truth confidence
p(t̂ |x). For reasoning paths that are likely to yield the correct answer (i.e., those with non-negligible
confidence), PPL achieves a substantially faster convergence rate. However, for reasoning paths with
extremely low confidence, the convergence advantage of PPL degrades. Furthermore, the Model

Error of PPL is typically larger than that of SC in practice, and we formally demonstrate this in the
ideal case in Appendix 4. This analysis suggests that the degradation issue of Estimation Error and
the large Model Error issue are fundamental challenges for improving PPL method.

3 Methodology

Based on our theoretical analysis, we identify three fundamental challenges in existing methods:
(1) SC suffers from slow Estimation Error convergence, leading to efficiency concerns; (2) PPL
exhibits large Model Error, compromising its effectiveness; (3) PPL’s Estimation Error convergence
advantage deteriorates significantly for certain cases, resulting in a degradation issue.

To address these challenges, we propose Reasoning-Pruning Perplexity Consistency (RPC), a novel
method with two key components. First, we integrate internal LLM probabilities into the self-
consistency framework to create Perplexity Consistency (PC), a confidence estimation function that
reduces estimation error efficiently while maintaining low model error, thus addressing the first two
challenges with theoretical guarantees. Second, we introduce a Reasoning Pruning (RP) module that
resolves the third challenge by systematically filtering out reasoning paths with low probabilities.

3.1 Perplexity Consistency

To address the efficiency and effectiveness challenges simultaneously, we propose PC, which directly
leverages the LLM’s prediction probability like PPL, obtaining the benefit of an exponential conver-
gence rate, and also applies the consistency function of SC to minimize the model error. Formally,
for the unique set of n sampled reasoning paths R = Set

(
t̃1, . . . , t̃n

)
, the estimated probability of

any possible answer ŷ is
p̂
(PC)(ŷ |x) =

∑

t̃→R

I[g(t̃) = ŷ]p(t̃ |x), (9)

which calculates the cumulative probability of all unique reasoning paths
{
t̃i | t̃i → R and g(t̃i) = ŷ

}

whose answer is ŷ. Therefore, the squared error of PC for any possible answer ŷ is

Ep̂(PC)(ŷ) = E
[
(p̂(PC)(ŷ |x)↑ I[ŷ = y])2

]
. (10)

Now, we present the following theorem, which explores the reasoning error decomposition of PC.
Theorem 4 (PC Reasoning Error Decomposition). Assume that k = |{t̃ | g(t̃) = ŷ}| and define

ω := 1↑ 1
kp(ŷ |x). Then, the reasoning error E(p̂(PC)) of PC can be divided into two components:

Ep̂(PC)(ŷ) = ω
n
p(ŷ |x)

(
2I[ŷ = y]↑ (1 + ω

n)p(ŷ |x)
)

︸ ︷︷ ︸
Estimation Error

+(p(ŷ |x)↑ I[ŷ = y])2︸ ︷︷ ︸
Model Error

.
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Figure 3: Our proposed RPC method

🚀 Contribution #2: By combining the strengths
of both SC and PPL, we introduce the RPC
method.

Figure 1: Illustration of the RPC approach. The Reasoning Pruning filters out low-probability
answers, while the Perplexity Consistency incorporates LLM probabilities into the self-consistency
framework, resulting in faster convergence of estimation error.
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of PPL decreases exponentially, with the rate depending on the magnitude of ground-truth confidence
p(t̂ |x). For reasoning paths that are likely to yield the correct answer (i.e., those with non-negligible
confidence), PPL achieves a substantially faster convergence rate. However, for reasoning paths with
extremely low confidence, the convergence advantage of PPL degrades. Furthermore, the Model

Error of PPL is typically larger than that of SC in practice, and we formally demonstrate this in the
ideal case in Appendix 4. This analysis suggests that the degradation issue of Estimation Error and
the large Model Error issue are fundamental challenges for improving PPL method.

3 Methodology

Based on our theoretical analysis, we identify three fundamental challenges in existing methods:
(1) SC suffers from slow Estimation Error convergence, leading to efficiency concerns; (2) PPL
exhibits large Model Error, compromising its effectiveness; (3) PPL’s Estimation Error convergence
advantage deteriorates significantly for certain cases, resulting in a degradation issue.

To address these challenges, we propose Reasoning-Pruning Perplexity Consistency (RPC), a novel
method with two key components. First, we integrate internal LLM probabilities into the self-
consistency framework to create Perplexity Consistency (PC), a confidence estimation function that
reduces estimation error efficiently while maintaining low model error, thus addressing the first two
challenges with theoretical guarantees. Second, we introduce a Reasoning Pruning (RP) module that
resolves the third challenge by systematically filtering out reasoning paths with low probabilities.

3.1 Perplexity Consistency

To address the efficiency and effectiveness challenges simultaneously, we propose PC, which directly
leverages the LLM’s prediction probability like PPL, obtaining the benefit of an exponential conver-
gence rate, and also applies the consistency function of SC to minimize the model error. Formally,
for the unique set of n sampled reasoning paths R = Set

(
t̃1, . . . , t̃n

)
, the estimated probability of

any possible answer ŷ is
p̂
(PC)(ŷ |x) =

∑

t̃→R

I[g(t̃) = ŷ]p(t̃ |x), (9)

which calculates the cumulative probability of all unique reasoning paths
{
t̃i | t̃i → R and g(t̃i) = ŷ

}

whose answer is ŷ. Therefore, the squared error of PC for any possible answer ŷ is

Ep̂(PC)(ŷ) = E
[
(p̂(PC)(ŷ |x)↑ I[ŷ = y])2

]
. (10)

Now, we present the following theorem, which explores the reasoning error decomposition of PC.
Theorem 4 (PC Reasoning Error Decomposition). Assume that k = |{t̃ | g(t̃) = ŷ}| and define

ω := 1↑ 1
kp(ŷ |x). Then, the reasoning error E(p̂(PC)) of PC can be divided into two components:

Ep̂(PC)(ŷ) = ω
n
p(ŷ |x)

(
2I[ŷ = y]↑ (1 + ω

n)p(ŷ |x)
)

︸ ︷︷ ︸
Estimation Error

+(p(ŷ |x)↑ I[ŷ = y])2︸ ︷︷ ︸
Model Error

.
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• Perplexity Consistency (PC) bridges the SC and PPL
methods to achieve both low model error and fast estimation
error convergence, but its convergence may degrade as 𝛼 → 1.

• Reasoning Pruning (RP) eliminates degradation cases by
automatically pruning reasoning paths that are not useful,
thereby ensuring the theoretical guarantees.

Experiments
🌟 Contribution #3: Our theoretical results align
with practice, e.g., RPC can enhance both
efficiency and reliability with broad applications.
Table 1: Efficiency comparison of Perplexity Consistency module (PC) and RPC. The table shows the
minimum number of samples needed to exceed the best performance of SC, with reduction rates in
bold when sampling is reduced.

Method MATH MathOdyssey OlympiadBench AIME
Accuracy #Samplings Accuracy #Samplings Accuracy #Samplings Accuracy #Samplings

Best of SC 50.57 64 28.32 112 11.07 128 9.40 128

PC 50.63 32 28.51 112 11.07 128 9.00 64
! +0.06 -50.0% +0.19 -0.0% 0.00 -0.0% 0.00 -50.0%

RPC 51.16 32 29.31 32 11.07 64 9.50 48
! +0.59 -50.0% +0.99 -71.4% 0.00 -50.0% +0.10 -62.5%

4 Experiments

In this section, we conduct experiments to answer the following research questions:

RQ1: Efficiency. How does RPC reduce the number of samples required to achieve comparable
performance through faster convergence?
RQ2: Efficacy. How does RPC improve reasoning performance compared to existing methods?
RQ3: Reliability. How does RPC enhance the reliability of confidence estimation compared to
existing methods?

Moreover, further discussions are devoted to further demonstrating the effectiveness of RPC.

4.1 Experimental Setting

In this section, we briefly introduce the comparison methods, datasets, and implementation details.
Due to space limitations, detailed experimental settings are included in Appendix C.

Comparison Methods. We compare three types of LLM confidences: perplexity confidence [57]
(PPL), self-consistency confidence [10] (SC), and verbalized confidence [52] (VERB). The verbalized
confidence is computed based on the probability that the LLM outputs “True” versus “False” when
asked an “Is-True” question. For code generation tasks, we extracted verbalized confidence scores
from the model’s numerical likelihood expressions by prompting the LLM.

Datasets. We introduce four popular benchmarks for math reasoning: MATH [25], MathOdyssey [16],
OlympiadBench [23], and AIME [67] (contains problems from 1983 to 2024). As to code gener-
ation tasks, we evaluate each method on three benchmarks, i.e., HumanEval [8], MBPP [3], and
introductory-level problems of APPS [24].

Implementation Details. For math reasoning tasks, we evaluate the InternLM2-Math-Plus models
with 1.8B and 7B parameters [65], as well as the DeepSeekMath-RL 7B model [49]. The consistency
function IC is the answer comparison. For code generation tasks, we evaluate the Deepseek-Coder
33B model. The consistency function IC is constructed based on semantic equivalence [42] by
clustering code based on given test cases. We set the sample size to n = 128 for the MathOdyssey,
OlympiadBench, and AIME datasets and n = 64 for the MATH dataset by default. Each experiment
is repeated 10 times with different random seeds, and the average performance is reported. All
experiments were conducted on Linux servers with A800 and H800 GPUs.

4.2 Empirical Results

RQ1: Efficiency. How does RPC reduce the number of samples required to achieve comparable
performance through faster convergence?

We evaluate our proposed RPC against the standard self-consistency method using four mathematical
benchmark datasets with the InternLM-2-MATH-Plus 7B model. For the MATH dataset, we set the
reasoning path size to 64, while we set the number of reasoning paths to 128 for the other datasets
with SC. We then record the best performance and minimum sampling requirements for SC. For both
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Table 1: Efficiency. RPC achieves equal or better performance
as SC while using 50% fewer samples.

(a) SC (b) RPC

Figure 3: The reliability diagrams of SC
and RPC on MathOdyssey dataset using
InternLM-2-MATH-Plus 7B model.

Figure 4: Performance on three code generation
tasks using Deepseek-Coder 33B model. The ex-
perimental results show that our RPC achieves the
best performance.

methods on three code generation benchmarks, as illustrated in Figure 4. The results show that RPC
achieves the highest accuracy across all datasets, demonstrating its effectiveness beyond mathematics.

Performance on Additional Reasoning Tasks. To further validate the effectiveness of RPC, we
conducted experiments on the GPQA [47] and LogiQA [39] benchmarks using the DeepSeek-R1-
Distill-Qwen-7B model [21] with 16 samples. The results in Appendix D.5 are consistent with those
from both math reasoning and code generation tasks, where RPC outperforms existing methods.

Performance across Model Scales and Architectures. To evaluate the generalization ability of our
approaches across different model scales and architectures, we conducted additional experiments
using InternLM2-Math-Plus 1.8B and DeepSeek-Math 7B models. The results in Table 3 is consistent
with results in Table 2. We additionally report the detailed performance of InternLM2-Math-Plus
1.8B using diverse sampling budgets in Appendix D.2. The experimental results demonstrate the
effectiveness of RPC across different model scales and architectures.

Performance using Advanced Methods and Models. To further verify the effectiveness of RPC
across diverse scenarios, we conduct additional experiments using the DeepSeek-R1-Distill-Qwen-7B
model [21], which is an advanced model with thinking capability. The results in Appendix D.4
demonstrate that the performance gains of RPC persist when combined with advanced models that
have strong reasoning performance, highlighting its potential for enhancing LLM reasoning capability.
Moreover, we also combine RPC with two advanced methods: ESC [36] and BoN using the reward
model [69], which are advanced versions of SC and PPL, respectively. The results in Appendix D.4
show that RPC applied to both methods consistently outperforms the SC and their original versions,
demonstrating its strong compatibility for integration with more advanced methods.

Performance using High Sampling Temperatures. As discussed above, sampling more diverse
reasoning paths is important for improving reasoning performance. Therefore, we additionally
conduct experiments under high sampling temperatures. As shown in Appendix D.1, RPC can further
improve reasoning performance under high sampling temperatures by benefiting from the diverse
reasoning paths, while the SC may deteriorate due to increased estimation errors at high temperatures.

Discussion about Computational Overhead. We discuss the computational overhead of RPC in
Appendix D.7. Theoretically, RPC introduces only minimal computational overhead compared to
SC. In practice, the additional computational overhead of RPC is negligible compared to the primary
computational bottleneck (i.e., LLM inference time) in reasoning tasks. RPC actually provides
an excellent computational trade-off, where the minimal computational overhead is exchanged for
significant time savings achieved by reducing the number of required LLM inferences.

Discussion about Hyper-parameters. We provide a detailed discussion of the hyperparameters in
Appendix D.6. Overall, RPC introduces the RP module to automatically prune reasoning paths with
low probability without requiring manual threshold setting. This makes RPC a hyperparameter-free
method that is robust across diverse reasoning tasks.

5 Related Work

This paper is related to the two topics, i.e., LLM Reasoning Boosting and LLM Confidence Estimation.

LLM Reasoning Boosting. Recent research [62, 38] has developed various methods to enhance LLM
reasoning. CoT [31] proposes the “Let’s think step by step” prompt to guide LLMs in generating
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Figure 4: Reliability. RPC
improves reliability diagrams
compared to SC.

Figure 5: Code Generation Table 2: Commonsense

Table 3: Results on R1 LLMs

Generality. Effectiveness on code,
commonsense and R1 LLMs.
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