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ABSTRACT

Semi-supervised learning (SSL) tries to improve performance with
the use of massive unlabeled data, which typically works in an
offline manner with two assumptions. i) Data distribution is static;
ii) Data storage overhead is unlimited. In many online tasks, how-
ever, none of the above assumptions is valid. For example, in online
image classification, a large amount of unlabeled images increases
sharply, which makes it difficult to store them in full; meanwhile,
the content of unlabeled images changes constantly, and it is no
longer suitable to assume a fixed distribution. We call such a novel
setting Resource Constrained SSL under Distribution Shift (or Record
for short) and to our best knowledge, it has not been thoroughly
studied yet. This paper presents a systemic solution Record consist-
ing of three sub-steps, that is, distribution tracking, sample selection
andmodel updating. Specifically, we propose an effective method to
track the distribution changes and locate distribution shifted sam-
ples. A novel influence-based approach is used to select the most
influential samples for the distribution change based on resource
constraints. Finally, we free up memory to put the latest unlabeled
data with its pseudo-label for the next distribution tracking. Exten-
sive empirical results confirm the effectiveness of our scheme. In
the case of diverse and unknown distribution shifts, our solution
is consistently and clearly better than many baseline and SOTA
methods along with the memory budget and in some cases it can
even approximate the performance of oracle.
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1 INTRODUCTION

Semi-supervised learning (SSL) is well-known in machine learning
field, which aims to enhance performance with the exploitation of
unlabeled data since in many situations the acquisition of a large
number of labeled data is infeasible. Tremendous efforts on SSL
have been devoted over the past decades, typically on the enhance-
ment of learning performance by introducing new feature repre-
sentation [25], model regularization [26], adversarial training [23]
and other interesting techniques [1]. These methods have been
applied successfully to various applications from medical diagnosis
to information retrieval [9, 10, 21, 22, 24, 31].

Previous SSL studies typically operate in an offline manner, i.e.,
the whole labeled and unlabeled data are given before training, un-
der two assumptions−−i) data distribution is static, i.e., the data are
drawn from a fixed distribution; ii) data storage overhead is unlim-
ited, i.e., the entire data set can be stored fully in memory. In many
scenarios, however, these assumptions do not hold. For example,
in autonomous car [29], some labeled road conditions images are
given at the initialization stage. Then, the car will receive massive
unlabeled images that are difficult to be stored fully and it is evi-
dent that the content of unlabeled images would change constantly
under different environments; in Twitter sentiment analysis [2],
labeled data is given at the beginning while massive unlabeled data
emerge every day with shifted distribution and it is not feasible
to store all the data into memory; in Didi comment system[13],
the machine learning model is initialized with a small amount of
labeled ride-sharing comment data and a huge amount of unlabeled
data arrives every day with varied distribution over time, region,
etc. Similar cases can be found in other online applications such as
spam detection and recommendation [5, 18, 29, 30].

To summarize, we have the data situation as following: i) Un-
labeled data is continuously streaming with a shifted distribution
over time; ii) Only a small number of manually labeled examples are
provided at the beginning of the stream. Moreover, it is demanded
that resources are often limited and constrained, e.g., memory bud-
get, since the stream is generally too large to fully store in memory.
As can be seen, such a situation is obviously different from previous
SSL studies. We call such a novel setting as Resource Constrained SSL
under Distribution Shift (or Record for short). To our best knowledge,
this setting has not been thoroughly studied yet. Figure 1 illustrates
the Record Setting and its formal definition is stated as follows.

Record Setting Given a labeled data set L = {(x1, y1),· · · , (xn,
yn )} at the beginning stage t = 0 and unlabeled data arrives in a
stream: U1, · · · ,Ut , · · · , where Ut = {x1, · · · , xm(t ) }. The under-
lying distribution p(x) changes over time gradually. Let B be the
memory budget, which means only B examples can be stored. The
goal is to train a model in the semi-supervised fashion at every
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Figure 1: Illustration of the Record setting

time step using the stored B examples and the unlabeled data that
arrives at the current time step.

It is evident that previous SSL studies could not well tackle the
setting concerned in this paper, because they operate in a static
environment which is unable to well address streaming data with a
distribution shift. There are some SSL attempts designed for data
streams [8], however, they either assume a fixed data distribution
or neglect the resource constraint. Budget SSL [33] considers the
resource constraint, however, they work on static scenarios and
could not tackle the distribution shift.

In this paper, we present a systemic solution Record. It consists
of three sub-steps: distribution tacking, sample selection and model
updating. Specifically, we track the distribution changes and locate
the distribution shifted samples. Then the most influential sample
for the distribution change is selected based on a novel influence-
based approach. Finally, the latest selected unlabeled data with
its pseudo-label is stored into memory for the next distribution
tracking. All the above operations are readily suitable for arbitrary
SSL algorithms. Extensive empirical results clearly demonstrate the
effectiveness of our scheme in the case of distribution shifts and
memory resource limitations.

In the following, we first review several relatedworks in section 2,
then present the technical details of the proposed Record scheme in
section 3. Next, we report the empirical results in section 4. Finally,
we conclude this paper.

2 RELATEDWORK

SSL is a well-established field and comprehensive reviews are avail-
able in [3, 31]. Most SSL studies were designed for the offline setting,
and there are some attempts designed for data stream [4, 5, 7, 8, 16,
29, 34]. [7] proposed an online manifold regularization algorithm
that can learn with unlabeled data based on convex programming
in kernel space. [8] proposed an online active semi-supervised
method by integrating a semi-supervised likelihood function and
a sequential Monte Carlo scheme. [16] proposed a graph-based
online SSL method via local consistency propagation. However,
these approaches do not take the distribution shift problem into

account. [4, 20] considered to learn from streaming data with a
distribution shift. However, they assume that the labeled data is
available at every time step which is difficult to satisfy in real-world
applications since the label is hard to collect. [14, 34] assumed that
there are unseen classes in the arrived data streaming and their
goal is to identify instances with new classes.

There are very limited studies on resource constrained SSL. [33]
is one early study on this topic and proposed an approximation
method to adapt graph-based SSL methods into the given resource
constraint. [6] adopted a density-based measure to select unlabeled
data points and led to a compact graph with reduced computational
costs. [19] proposed a resource constraint semi-supervised SVM
that leverages the adjacent and distributive information carried
in a spectral graph for efficient memory usage. However, all the
aforementioned efforts carried on the stationary environment.

There are two related studies [5, 29], where the labeled data is
provided at the beginning stage and the unlabeled data arrives in
a stream. Specifically, [5] proposed an SSL approach based on a
geometry algorithm. However, they do not consider the memory
resource limitation, and the proposed geometry method is only
useful for low-dimensional data. [29] proposed a graph-based on-
line SSL method via temporal label propagation with the memory
constraint. However, the method does not consider the distribution
shift and can only be applied to graph-based SSL.

3 PROPOSED RECORD SCHEME

In this section, we propose a systemic scheme Record to deal with
the Record problem. Two major challenges of the Record setting are
i) There is a distribution shift in the data streams. How to make
the algorithm adapt to the distribution shift and avoid performance
degradation? ii) The volume of unlabeled data is generally too large
to fully be stored into memory. How to leverage unlabeled examples
to help improve the performance gain compared with the simple
supervised learning model under memory resource constraint?
Record provides a systemic solution consisting three main sub-
steps, distribution tracking, sample selection andmodel updating. We
first present a brief introduction to the basic framework of Record,
including notations and setting. Then we describe the detail of the
main techniques, and next give an analysis of the complexity.

3.1 Overall Framework

Consider a prediction problem from some input space X ∈ Rd to
an output space Y ∈ RC where d is the feature dimension and C
is the number of classes. At the beginning stage (time t = 0), a
small amount of labeled data set L = {(xi , yi )}ni=1 is given where
(xi , yi ) ∈ X × Y. At all other time t , we receive only unlabeled
data Ut = {xi }m

t

i=1 wherem
t could be different at different time

step. We aim to learn a function f : X → Y that performs well
on the underlying distribution pt (x, y) at every time step t . Table 1
summarizes the notations used in this paper.

In our paper, we consider the underlying distribution pt (x) at
time t could be shifted from pt−1(x) at time t − 1 and assume
the distribution shift is gradual, i.e., distribution pt (x) in time t
must have a considerable overlap with the distribution pt−1(x) [5].
The assumption is reasonable in practice and a completely random



Figure 2: The proposed framework. At time t = 0, a small labeled data set is given, where the circle and rectangle indicate two

classes. At all subsequent time step steps, unlabeled dataUt
is received and the distribution could shift gradually over time.

Table 1: Summary of Notations.

Notation Meaning
n Number of labeled data
mt Number of unlabeled data at time t
B Memory resource budget
C Number of classes
x ∈ X Feature vector of examples
y ∈ Y = {1, · · · ,C} True label of labeled examples
ŷ ∈ Y = {1, · · · ,C} Pseudo-label of unlabeled examples
f : X → Y Learned function
Ut Unlabeled data arrives at time t
A A semi-supervised algorithm
Dt
s Stored data at time t with size ≤ B

fluctuation is intractable for learning. Figure 3 illustrates an example
of the distribution shift.

Figure 3: Distribution shift between pt−1(x) and pt (x).

To make the framework satisfy memory resource constraint, we
propose to select unlabeled examples to store at every time step,
i.e., maintain a data set Ds that contains at most B examples and

can be continuously updated. Ds is initialized as L. At time t , we
train an SSL model with the stored data Dt

s and unlabeled dataUt .
Therefore, the key problem in our setting is how to select examples
and update Ds continuously to make it adapt to the distribution
shift in the subsequent time steps and helpful for model building.

Conceptually, Record solves the following problem at each time
step t :

max
Dt
s

per f ormance(f ) (1)

s.t. f = A(Dt
s ,U

t )

Dt
s ⊆ Dt−1

s ∪Ut−1

size(Dt
s ) ≤ B

A schematic description of the overall framework of Record is
shown in Figure 2.

3.2 Shifted Example Detection

A straightforward example selection method is to randomly select
B examples to store at each time step. It is evident that this method
could not work well since it does not take the structure of unlabeled
data into account. Further, an intuitive method is to select examples
with high softmax probability since the predicted probability reveals
the confidence of the example to the learning task [12]. However,
as the underlying probability distribution pt (x) ofUt could change
over time, we need not only examples with high confidence in
current pt (x) but also examples that reveal the data distribution
shift trend. To do so, we first need to identify examples shifted from
the previous distribution, i.e., data in the non-overlapped region
between pt−1(x) and pt (x).

Specifically, we adopt probabilities from softmax distribution as
a criterion since examples in the previous distribution tend to have
high softmax probabilities than examples in the non-overlapped
region [15]. The softmax probabilities can be written as f (x) ∈



Algorithm 1 Record Approach
Input: Any SSL algorithm A, labeled data L = {(xi , yi )}ni=1,

stored data D0
s that initialized as L.

1: for t = 0, 1, · · · do
2: Receive unlabeled dataUt = {xi }m

t

i=1.
3: Run SSL algorithm A with Dt

s andUt ,
Obtain f t : X → Y.

4: Obtain the predicted probability f t (x),∀x ∈ Ut .
5: Assign pseudo-label ŷ to x,∀x ∈ Ut .
6: Let R = ∅

7: for each class c = 1, · · · ,C do

8: Uc = {xi ∈ Ut where ŷi = c}.
9: SplitUc intoUin

c andUout
c .

10: Randomly select |Uin
c | examples from other classes, com-

bined withUin
c , named Utrain

c .
11: Randomly select |Uout

c | examples from other classes, com-
bined withUout

c , namedUtest
c .

12: Run Algorithm 2 withUtrain
c ,Utest

c ,Uin
c ,

obtain Rc .
13: R = R ∪ Rc .
14: end for

15: Combine R with examples in Dt
s via Eq.(7) as Dt+1

s .
16: end for

R1×C where f (x)c indicates the posterior probability p(c |x, f ). We
can then assign a pseudo-label ŷ to each example based on the
probabilities:

ŷ = argmax
c ∈{1, · · · ,C }

f (x)c (2)

Let Uc be the set of all examples in Ut with pseudo-label c . We
split Uc into two subsets Uin

c and Uout
c with equal size based on

the predicted probability. Specifically, Uin
c contains examples with

the largest probabilities, which are likely to fall into the region of
previous data distribution whileUout

c contains the rest examples
which consequently lie in the shifted distribution (i.e., examples in
the non-overlapped region). Figure 4 illustrates the splitting process
and the examples inUin

c andUout
c .

Figure 4: Examples in Uin
c (the black circle) and Uout

c (the

green circle). The examples inUin
c being larger probabilities

are in the overlapped region while the examples inUout
c be-

ing lower probability are in the non-overlapped region.

3.3 Influential Example Selection

After obtaining Uin
c and Uout

c , we come to the problem of how to
select examples most helpful for the subsequent time steps. Our

Algorithm 2 Influence Function Computation.
Input:Utrain

c ,Utest
c ,Uin

c .
1: Train a logistic regression model withUtrain

c .
2: for example x inUin

c do

3: IF(x) = 0
4: for example ztest in Utest

c do

5: Calculate I(x, ztest ) via Eq.(5).
6: IF(x) = IF(x) + I(x, ztest ).
7: end for

8: end for

9: Sort examples inUin
c according to IF(x).

10: return Examples inUin
c with IF(x) > 0.

basic idea is to select examples from Uin
c based on its influence

onUout
c since examples inUin

c being a high softmax probability
indicate that they are helpful for the learning task meanwhile as
they are influential onUout

c , they are to some extent able to reveal
the distribution shift trend.

Specifically, we propose to adopt influence function [17] to evalu-
ate the influence of one example inUin

c onUout
c since the influence

function is a very useful tool to help find the training examples that
are most influential for an underlying distribution.

To compute the influence function, we first need to construct a
training and testing data set and build a logistic regressionmodel [17].
To do so, we randomly sample |Uin

c | and |Uout
c | (|Uin

c | and |Uout
c |

indicate the numbers of examples inUin
c andUout

c ) examples from
Uin
c ′ and Uout

c ′ (where c ′ , c) as negative examples (i.e., ỹ = −1)
and combine these examples with Uin

c andUout
c as positive class

(i.e., ỹ = 1) to construct a binary classification training setUtrain
c

and testing setUtest
c ,

Utrain
c = Uin

c ∪ Random |Uin
c |(U

in
c ′ ) (3)

Utest
c = Uout

c ∪ Random |Uout
c |(U

out
c ′ ) (4)

where Randomn (D) refers to n examples randomly selected from
the data set D.

Then, we can train a logistic regression model on Utrain
c and

calculate the influence I(x, ztest ) for example x in Uin
c and test

data point ztest = (xtest , ỹ) inUtest
c .

Specifically, let θ be the parameter of the logistic regression
model and σ (t) = 1

1+exp(−t ) . The logistic loss function for the ex-
ample x ∈ Uin

c refers to L(x, θ ) = log(1 + exp(−θ⊤x)), and based
on [17] the I(x, ztest ) can be written as:

ỹσ (−ỹθ⊤xtest ) · σ (−θ⊤x)x⊤testH
−1
θ x (5)

where Hθ is the Hessian of the logistic loss function.
The influence of example x can be written as,

IF(x) =
1

|Utest
c |

∑
ztest ∈Utest

c

I(x, ztest ) (6)

Finally, for each class c , let Rc be the set containing examples in
Uin
c with positive influence, i.e., IF(x) ≥ 0. If the number of these

examples |Rc | is greater than the memory resource constrained
number B

C , we retain B
C most influential examples, otherwise we

replace the oldest examples in Dt
s to feed these examples,



Figure 5: Illustration of data selection in class c.

Dt+1
s =

C⋃
c=1

{
Top-IF B

C
(Rc ) |Rc | ≥

B
C

Latest B
C −|Rc |

(Dt
s ) ∪ Rc |Rc | <

B
C

}
(7)

The retained examples along with their pseudo-labels can be
used in the subsequent steps. Figure 5 illustrates an example of
data selection for one class c . The detailed procedure of Record is
summarized in Algorithm 1.

3.4 Complexity Analysis

At every time step t , Record needs to split examples in each class
c intoUin

c andUout
c , and the time complexity isO(mt log(mt )) as

the examples need to be sorted according the the predicted prob-
ability. As for the calculation of the influence for each example
in Uout

c , according to [17], the computation time complexity to
calculate influence function is O

(
(mt )2

4 d
)
where d is the feature

dimension. Overall, the whole computation time complexity for
Record at each time step is O

(
(mt )2

4 d +mt log(mt )
)
. And obvi-

ously, the space complexity of Record is O(B +mt ).

4 EXPERIMENTS

In this section, we conduct extensive experiments on various data
sets and competitive methods to evaluate the effectiveness of the
Record approach.

4.1 Setup

Experiments are conducted on various data sets, including four com-
monly used classification data sets (Optdigits, Satimage, Twonorm,
Spam) and four benchmark data sets (1CHT, 2CDT, UG_2C_2D,
UG_2C_5D) [27] which is designed for evaluating learning algo-
rithm on streaming data. The data sizes vary from 5, 620 to 200, 000
and feature dimensions vary from 2 to 500. The statistics of these
data sets is summarized in Table 2.

To validate the generality of Record that can be incorporated
with various SSL algorithms, three diverse kinds of SSL algorithms
are considered.

• Mean Teacher [28]: Mean Teacher is one representative deep
SSL method. It adopts consistency regularization as the un-
supervised loss, and averages model parameters to form a
high quality generated targets for unlabeled examples. The
consistency regularization based deep SSL methods have
achieved SOTA results on various SSL tasks [24].

Table 2: Statistics of data sets

Dataset # instance # feature # class # labeled examples
(per class)

Optdigits 5,620 64 10 10
Satimage 6,435 36 7 10
Twonorm 7,400 20 2 10
Spam 9,324 500 2 50
1CHT 16,000 2 2 1
2CDT 16,000 2 2 5

UG_2C_2D 100,000 2 2 1
UG_2C_5D 200,000 5 2 5

• Label Propagation: Label propagation is a graph-based SSL
method that transfers class information from labeled vertices
to neighboring examples. The underlying assumption of label
propagation is the smooth assumption, i.e., similar examples
should have similar labels.

• S3VM: Semi-Supervised Support Vector Machine (S3VM) is
a classical SSL method based on the low-density assumption
that aims to construct a decision boundary that passes the
low-density region.

Data set preparation. For the four commonly used classifi-
cation data sets, we simulate the distribution shift manually by
regrouping the instances. Specifically, for Optdigits, Twonorm and
Satimage, 200 instances arrive every time step in which 160 as un-
labeled data, 40 as test data; for Spam, 400 instances arrive every
time step and 280 as unlabeled data, 120 as test data. For the four
benchmark data sets, the distribution shift is the same as the de-
fault setup described in [27]. Specifically, at every time step, 400
instances arrive for 1CHT and 2CDT, 1,000 instances arrive for
UG_2C_2D and 2,000 instances arrive for UG_2C_5D, 30% as test
data. For S3VM, we construct a binary classification task (1 vs 7)
for Optdigits and Satimage data sets since it is inefficient to han-
dle multi-class classification task. The number of labeled examples
given at the beginning stage for each data set are listed in Table 2.

Parameter detail. For S3VM and Label Propagation, we adopt
the implementation in sklearn1. The RBF kernel is adopted for
S3VM and 9NN is adopted for Label Propagation on Spam data set.
All other parameters are set as default. For Mean Teacher, we adopt
the official implementation 2 and run 1,000 training iterations. For
our framework Record the memory resource budget B is set as
100, i.e., only 100 unlabeled examples can be stored into memory.

4.2 Compared with Baseline Methods

As there is no literature working on the same setting concerned in
the paper, we first study how effective Record is at improving clas-
sification performance gain in comparison with a simple supervised
learning method,

• Supervised: Simply train a supervised model using only the
labeled examples while ignoring all coming unlabeled exam-
ples. The Supervised method can be seen as the lower bound
of the performance.

1https://scikit-learn.org/
2https://github.com/CuriousAI/mean-teacher

https://scikit-learn.org/
https://github.com/CuriousAI/mean-teacher


Figure 6: Accuracy of compared methods on 8 data sets with Mean Teacher as the basic SSL model. Shaded regions indicate

standard deviation.

Figure 7: Accuracy of compared methods on 8 data sets with Label Propagation as the basic SSL model.

and two baseline example selection methods,

• Proba: Select examples according to the prediction proba-
bility, i.e., examples with a higher softmax probability are
selected. This method has been proved effective in various
tasks, e.g., out of distribution examples detection [15].

• Random: Randomly select the unlabeled examples to store
at every time step. This is the simplest method to satisfy the
memory resource constraint.

For the other configurations, Proba and Random follow the same
setups as those in Record.

We also compare with an Oracle method,

• Oracle: Assume that the ground-truth labels are available
and a supervised model is trained at every time step. Oracle
is impossible in real practice and can be seen as the upper
bound of the performance to the learning task.

Mean ± Std accuracy of 5 runs with 3 different SSL implemen-
tations on 8 data sets are shown in Figure 6-8. From the results,
we can observe that Record achieve the best performance among
the compared methods regardless of the SSL methods and data sets
whereas the simple Proba and Random methods all suffer perfor-
mance degradation with the distribution shift and can not achieve
performance gain compared with the Supervised method. More-
over, the Record very closely follows the performance of the Oracle



Figure 8: Accuracy of compared methods on 8 data sets with S3VM as the basic SSL model.

Figure 9: Comparison results with TLP on 8 data sets

method and even better than the Oracle in some cases. The main
reason is Record can access to the stored examples from previ-
ous distributions. This phenomenon validates Record can retain
helpful examples for subsequent time steps. These demonstrate the
effectiveness and generality of the proposed Record scheme.

4.3 Compared with State-of-the-art Methods

We also compare Record to two works that are most related to our
work: COMPOSE [5] and TLP [29]. TLP is specifically designed for
graph-based SSL methods. TLP maintains a small synopsis of the
data stream that can be quickly updated as new examples arrive.
The effectiveness of TLP has been demonstrated in various real-
world tasks such as ECG analysis, autonomous car [29].

The comparison results of 5 runs on 8 data sets are shown in
Figure 9. We can observe that the performance of TLP method
degrades dramatically with the distribution shift in many cases
while our Record performs more stable with the distribution varies
and achieves a significant performance gain comparedwith TLP.We
also report the average performance on the whole data streams in
Table 3. We can see that, TLP method performs even worse than the
baseline Supervised method on Twonorm, Spam andUG_2C_5D data
sets while our Record works much better, and even approximates
the performance of oracle in some cases.

COMPOSE adopts a compacted polytope sample extraction al-
gorithm and generates pseudo-labels for previously unlabeled ex-
amples and combine these examples with incoming unlabeled data.



Figure 10: Compared with COMPOSE on UG_2C_2D (left)

and 2CDT (right) data sets with 3 basic SSL models.

Table 3: Mean ± Std accuracy on the whole data streams

with Label Propagation as the base SSLmethod. The best two

methods (including Oracle method) are emphasized in bold.

Moreover, the underline indicates that the method is even

worse than the supervised method.

Data set Supervised TLP Record Oracle
Optdigits 46.64 ± 1.04 53.56 ± 1.42 79.20 ± 2.01 85.61 ± 0.25

Twonorm 70.84 ± 0.36 57.24 ± 0.86 94.31 ± 0.38 94.99 ± 0.13

Satimage 43.47 ± 2.61 58.43 ± 2.54 71.02 ± 2.93 89.59 ± 0.70

Spam 55.12 ± 3.48 54.18 ± 1.39 56.55 ± 4.72 76.35 ± 2.41

1CHT 54.79 ± 4.93 95.78 ± 1.27 99.44 ± 0.05 99.44 ± 0.01

2CDT 44.47 ± 0.46 54.28 ± 0.48 88.68 ± 1.57 95.36 ± 0.13

UG_2C_2D 46.40 ± 0.23 47.56 ± 1.12 94.11 ± 0.12 95.35 ± 0.04

UG_2C_5D 61.00 ± 1.01 54.40 ± 0.17 91.39 ± 0.08 90.41 ± 0.05

However, the geometry-based method can only be applied to low-
dimensional data set, so we only run COMPOSE on 1CHT and 2CDT
data sets based on three base SSL methods. For COMPOSE, the two
important parameters α and cp are set to 0.4 and 0.7 separately.

The experimental results on two data sets are summarized in
Figure 10. From the results, we can see that, on UG_2C_2D data set,
both Record and COMPOSE perform well at first 60 time steps,
however, after 60 steps, COMPOSE suffers a severe performance
degradation problem while Record still maintain the good per-
formance that close to the Oracle method. And on 2CDT data set,
the performance of COMPOSE degrades even in the first 5 time
steps whereas Record achieves a significant performance gain com-
pared with COMPOSE. The average performance on the whole data
streams is reported in Table 4, we can observe the similar results

Table 4: Mean ± Std accuracy with the 3 SSL implementa-

tions on 2CDT and UG_2C_2D data sets.

2CDT
SSL methods Supervised COMPOSE Record Oracle
Mean Teacher 54.40 ± 0.36 54.09 ± 0.24 94.60 ± 0.13 96.72 ± 0.18

Label Propagation 44.47 ± 0.46 53.19± 0.20 88.70 ± 1.57 95.36 ± 0.13

S3VM 48.40 ± 2.29 56.05 ± 0.70 80.41 ± 0.19 96.71 ± 0.16

UG_2C_2D
Mean Teacher 47.82 ± 0.65 88.76 ± 0.35 92.34 ± 0.66 95.94 ± 0.02

Label Propagation 46.40 ± 0.23 92.63 ± 2.89 94.11 ± 0.12 95.35 ± 0.04

S3VM 46.49 ± 0.19 83.05 ± 5.09 95.55 ± 0.05 96.02 ± 0.04

that our Record always better than COMPOSE and very close to
the Oracle method while COMPOSE performs even worse than
Supervised method in some case. All results demonstrate that our
proposal achieves state-of-the-art performance in this setting.

4.4 Impact of Memory Budget

It is meaningful to study the impact of the memory budget. We
investigate how the performance varies with the memory budget
decreased from 80 to 10 on four benchmark data sets. S3VM is
adopted as the base SSL method. The results are plotted in Fig-
ure 11. We can see that Record does not suffer severe performance
degradation as long as we can store more than 20 examples.

Figure 11: Performance of Recordwith variedmemory bud-

gets on 4 benchmark data sets.

4.5 Visualization of Retained Examples

To further show the validity of examples retained by Record, we
visualize the distribution shift and retained examples in Figure 12.
The experiment is conducted on UG_2C_2D data set. The blue and
red circles indicate retained examples while shaded circles indicate
all unlabeled examples arrived at the current time step. We can see
that Record can retain examples in the overlapped region of pt (x)
and pt+1(x) which helpful for current distribution and track the
distribution shift trend.



Figure 12: Visualization of distribution shift and retained ex-

amples on UG_2C_2D data set, from time step 5 to 14.

5 CONCLUSION

In this paper, we tackle the novel and realistic Record setting that has
rarely been studied before and have proposed a systemic solution
Record. Record tracks the distribution shift trends based on a
novel influence-based approach. We select the most influential
samples for the distribution change based on memory constraint.
The learned model is constantly updated via the newly stored data
for the next distribution tracking. Extensive empirical results on
various data sets demonstrate that Record perform clearly better
than many competitive baseline and SOTA methods. Moreover,
Record is readily suitable for arbitrary SSL implementations.

In Record, we assume the class space of all unlabeled examples is
fixed. In some online applications, unseen classes may emerge [11].
We will consider extending this work to scenarios with unseen
classes and prior knowledge [32] in the future.

The code and data for the experiments could be freely down-
loaded at https://www.lamda.nju.edu.cn/code_RECORD.ashx or
https://github.com/WNJXYK/RECORD.
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