

TL; DR

We investigate a new problem setting OPT and propose DeCoOp to explore integrating out-of-distribution detection into the prompt tuning paradigm.

OPT Problem Setting

Definition

▲ Figure 1: The overall illustration of OPT problem

Motivation

- The requirements to recognize new class samples emerges in realworld applications, the , and these samples cannot be identified as a new class before testing.
- *The performance of H and accuracy metrics are inconsistent.* Left subfigure of Figure 2 demonstrates that the improvement in the H metric corresponds to reduced accuracy, while right subfigure shows a deterioration in H is associated with increased accuracy.

Challenges

Existing methods and evaluating metrics ignore the base-to-new *discriminability*, i.e., distinguishing whether a testing sample belongs to base classes and new classes. As shown in Figure 3, prompt tuning methods will degrades base-to-new discriminability.

New-class discriminability degrades for prompt tuning methods, making the prompt tuning not robust, as shown in Figure 4.

DeCoOp: Robust Prompt Tuning with Out-of-Distribution Detection

Zhi Zhou, Ming Yang, Jiang-Xin Shi, Lan-Zhe Guo[™], Yu-Feng Li[™]

Accuracy=61.53% -0.75 0.50 -0.25 (b) Prompt Tuning Method PT

DePt and DeCoOp Approach

DePt Framework

We propose a <u>De</u>composed <u>Prompt Tuning</u> (DePt) framework, which integrates a zero-shot baseline P_{ZS} , a prompt tuning baseline P_{PT} , and an OOD detector P_{OOD} using the following formulation. The main idea is to distinguish OOD samples and let zero-shot and prompt tuning methods handle the base classes and new classes respectively.

> $P_{PT}(y|\boldsymbol{x}), P_{OOD}(y \in \mathcal{Y}_{b}|\boldsymbol{x}) \geq P_{OOD}(y \in \mathcal{Y}_{n}|\boldsymbol{x}),$ $P_{\text{Zs}}(y|\boldsymbol{x}), \quad P_{\text{OOD}}(y \in \mathcal{Y}_{b}|\boldsymbol{x}) < P_{\text{OOD}}(y \in \mathcal{Y}_{n}|\boldsymbol{x}).$

Theoretical Analysis of DePt

We prove that the DePt framework can achieve better performance compared to the zero-shot baseline, measuring their error using the cross-entropy metric.

Theorem 2.1. If $\mathbb{E}_{\boldsymbol{x}} \left[H_{ZS}^{CLS}(\boldsymbol{x}) \right] \leq \delta$ for \boldsymbol{x} b
both base and new classes, $\mathbb{E}_{\boldsymbol{x}}\left[H_{\mathrm{PT}}^{\mathrm{CLS}}(\boldsymbol{x})\right] \leq d$
belonging to base classes, and $\mathbb{E}_{\boldsymbol{x}}\left[H_{\mathrm{ZS}}^{\mathrm{OOD}}(\boldsymbol{x})\right]$
uniform mixing ratio ($\alpha : 1 - \alpha$) of base class
classes in the testing data, we can determine th
$\int \mathbb{E}_{\boldsymbol{x}} \left[H_{ZS}(\boldsymbol{x}) \right] \leq \epsilon + \delta,$
$ \mathbb{E}_{\boldsymbol{x}} \left[H_{\text{DEPT}}(\boldsymbol{x}) \right] \leq \epsilon + \delta - \alpha \cdot \Delta. $

DeCoOp Approach

Motivated by DePt framework, we propose a **De**composed **Co**ntext **Optimization (DeCoOp)** approach, shown in Figure 5. The main idea is to train better OOD detector \mathcal{M}_D using the leave-out strategy and train classifiers $\mathcal{M}_{\mathcal{C}}$ for stronger generalization for new classes based on DePt framework. The leave-out strategy address the challenge of lacking knowledge of new classes during training. The stronger generalization of $\mathcal{M}_{\mathcal{C}}$ is achieved by simulating the emergence of new categories during training with the help of leave-out strategy.

Testing DataImage: Strain Strai		New-Class Detector #1 Simulated Base: {Truck, Tree, Car} ▲ Learnable Prompt	5	r r
	;;; >	New-Class Detector #2 Simulated Base: {Truck, Tree, Car} → Learnable Prompt	Router	
		New-Class Detector #3 Simulated Base: {Truck, Tree, Car} → Learnable Prompt	£2 61	• •
Base and New Classes {Truck, Tree, Car} {Cat, Bird, Flower}				<u>v</u>
🗱 Frozen 🄥	Learna	ble Base Class New Cla	ISS	C
▲ Fi	gure	e 5: The overall illustrat	tion	of

 $r \ x \ belonging \ to$ $\leq \delta - \Delta$ for \boldsymbol{x} $(\boldsymbol{x}) \leq \epsilon$, given a classes and new nine that:

Research Question #1

conform to our theoretical analysis?

Method	VIT-	-B/16	VIT-B/32		
	NEW ACC.	ACCURACY	NEW ACC.	ACCURACY	
Zs	65.49	63.92	63.95	60.36	
Рт	57.73	65.57	53.01	61.03	
DEPT	68.15	68.03	65.45	62.92	

Research Question #2

thereby demonstrating its robustness?

	AVE	RAGE	IMAGENET		CALTECH101		OXFORDPETS	
	Н	ACC.	Н	ACC.	Н	ACC.	Н	ACC.
CLIP	70.84	63.92	70.20 ± 0.00	66.73 ± 0.00	95.41 ± 0.00	92.90 ± 0.00	92.93 ± 0.00	88.03 ± 0.00
Prompt Ens.	71.65	65.39	72.00 ± 0.00	68.48 ± 0.00	96.20 ± 0.00	94.08 ± 0.00	92.42 ± 0.00	86.37 ± 0.00
СоОр	72.14	65.57	64.95 ± 1.11	61.79 ± 1.09	95.96 ± 0.39	93.24 ± 0.68	95.38 ± 0.33	89.61 ± 0.34
COCOOP	74.72	67.67	72.71 ± 0.33	69.41 ± 0.36	95.55 ± 0.24	93.43 ± 0.37	$\textbf{95.71} \pm \textbf{0.76}$	$\textbf{90.24} \pm \textbf{1.32}$
Ship	72.26	64.51	67.29 ± 0.38	63.65 ± 0.32	95.83 ± 0.23	92.93 ± 0.37	94.44 ± 0.54	86.78 ± 1.32
DECOOP(OURS)	76.13	69.69	$\textbf{72.98} \pm \textbf{0.04}$	69.62 ± 0.08	96.52 ± 0.09	$\textbf{94.50} \pm \textbf{0.22}$	95.27 ± 0.08	88.87 ± 0.28
	STANDFO	ORDCARS	FLOWERS102		Food101		FGVCAIRCRAFT	
	Н	ACC.	Н	ACC.	Н	ACC.	Н	ACC.
CLIP	68.75 ± 0.00	65.39 ± 0.00	72.74 ± 0.00	67.28 ± 0.00	90.18 ± 0.00	85.40 ± 0.00	30.25 ± 0.00	23.94 ± 0.00
Prompt Ens.	69.36 ± 0.00	65.95 ± 0.00	72.14 ± 0.00	67.03 ± 0.00	90.32 ± 0.00	85.54 ± 0.00	29.42 ± 0.00	23.31 ± 0.00
СоОр	68.22 ± 0.49	63.81 ± 0.44	78.33 ± 2.26	72.11 ± 2.36	86.65 ± 1.38	80.84 ± 1.50	29.38 ± 1.78	24.80 ± 1.23
COCOOP	71.49 ± 0.62	67.75 ± 0.68	80.04 ± 1.46	71.95 ± 1.24	90.41 ± 0.24	85.61 ± 0.43	27.87 ± 11.36	21.46 ± 7.42
Ship	69.71 ± 0.43	64.67 ± 0.55	76.85 ± 2.18	70.40 ± 2.01	86.84 ± 1.49	77.39 ± 2.19	27.13 ± 1.10	24.44 ± 0.96
DECOOP(OURS)	$ 73.24 \pm 0.15$	69.64 ± 0.19	84.16 ± 0.27	$\textbf{78.61} \pm \textbf{0.59}$	90.68 ± 0.09	$\textbf{85.83} \pm \textbf{0.07}$	$\textbf{31.44} \pm \textbf{0.39}$	$\textbf{25.15} \pm \textbf{0.31}$
	SUN	1397	DTD		EuroSAT		UCF101	
	Н	ACC.	Н	ACC.	Н	ACC.	Н	ACC.
CLIP	72.26 ± 0.00	62.57 ± 0.00	57.32 ± 0.00	44.56 ± 0.00	58.16 ± 0.00	41.40 ± 0.00	71.00 ± 0.00	64.97 ± 0.00
Prompt Ens.	75.04 ± 0.00	65.97 ± 0.00	59.63 ± 0.00	46.28 ± 0.00	58.45 ± 0.00	48.91 ± 0.00	73.17 ± 0.00	67.33 ± 0.00
СоОр	71.37 ± 1.21	61.82 ± 1.11	57.22 ± 2.37	48.18 ± 1.78	74.33 ± 4.35	59.65 ± 5.07	71.68 ± 2.84	65.41 ± 2.18
COCOOP	77.17 ± 0.27	68.17 ± 0.33	60.59 ± 1.51	47.90 ± 1.43	73.77 ± 3.58	58.08 ± 1.49	76.59 ± 0.79	70.39 ± 1.25
Ship	72.57 ± 0.38	60.42 ± 0.48	56.82 ± 2.18	47.58 ± 1.62	73.29 ± 2.67	54.11 ± 1.73	74.09 ± 2.09	67.24 ± 1.94
DECOOP(OURS)	$ 78.11 \pm 0.09 $	69.33 ± 0.05	$ 62.72 \pm 1.23 \\ $	$\textbf{51.44} \pm \textbf{1.04}$	$ 74.61 \pm 3.82$	$\textbf{61.90} \pm \textbf{3.72}$	$ \mathbf{77.67 \pm 0.50} \\$	$\textbf{71.71} \pm \textbf{0.79}$

 \checkmark If you are interested in this paper, please feel free to contact Zhi Zhou (zhouz@lamda.nju.edu.cn) or visit our project homepage for more details (https://wnjxyk.github.io/DeCoOp). This research was supported by National Science and

Technology Major Project (2022ZD0114803) and the National Science Foundation of China (62306133, 62176118).

Experiments

Can the empirical results of the DePt framework on real-world datasets

▲ Table 1:Performance of DePt framework

Can the DeCoOp method surpass existing baseline and SOTA methods,

▲ Table 2: Performance of DeCoOp approach

Does the DeCoOp successfully improve the base-to-new discriminability?

DATASET	CLIP	СоСоОр	Ship	DECOOP(OURS)
IMAGENET	88.34	88.05	84.71	97.48
CALTECH101	97.03	95.71	96.94	99.58
OXFORDPETS	92.66	91.15	93.30	98.12
S TANFORD C ARS	86.24	83.00	87.23	97.63
FLOWERS102	84.92	79.63	84.84	95.75
Food101	89.88	88.19	89.92	97.59
FGVCAIRCRAFT	75.08	69.00	75.78	84.06
SUN397	72.46	73.75	74.78	90.21
DTD	62.29	60.65	60.66	75.47
EuroSAT	56.40	57.74	59.32	77.78
UCF101	82.03	79.03	80.35	93.56
AVERAGE	80.67	78.72	80.71	91.57
	DATASET IMAGENET CALTECH101 OXFORDPETS STANFORDCARS FLOWERS102 FOOD101 FGVCAIRCRAFT SUN397 DTD EUROSAT UCF101 AVERAGE	DATASET CLIP IMAGENET 88.34 CALTECH101 97.03 OXFORDPETS 92.66 STANFORDCARS 86.24 FLOWERS102 84.92 FOOD101 89.88 FGVCAIRCRAFT 75.08 SUN397 72.46 DTD 62.29 EUROSAT 56.40 UCF101 82.03 AVERAGE 80.67	DATASETCLIPCOCOOPIMAGENET88.3488.05CALTECH10197.0395.71OXFORDPETS92.6691.15STANFORDCARS86.2483.00FLOWERS10284.9279.63FOOD10189.8888.19FGVCAIRCRAFT75.0869.00SUN39772.4673.75DTD62.2960.65EUROSAT56.4057.74UCF10182.0379.03AVERAGE80.6778.72	DATASETCLIPCOCOOPSHIPIMAGENET88.3488.0584.71CALTECH10197.0395.7196.94OXFORDPETS92.6691.1593.30STANFORDCARS86.2483.0087.23FLOWERS10284.9279.6384.84FOOD10189.8888.1989.92FGVCAIRCRAFT75.0869.0075.78SUN39772.4673.7574.78DTD62.2960.6560.66EUROSAT56.4057.7459.32UCF10182.0379.0380.35AVERAGE80.6778.7280.71

