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▲ Figure 3: The overall illustration of FTAT

TL; DR We design a fully test-time adaptation for tabular data that addresses covariate and label distribution shifts.
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Figure 4: The overall illustation of FTAT approach.

compute the covariate matrix Ĉt at the current timestamp t,
where its k-th row is equal to

∑|Dt|
i=1 I

[
argmaxj f̂ωt(xi)j = k

]
· f̂ωt(xi)

∑|Dt|
i=1 I

[
argmaxj f̂ωt(xi)j = k

] (4)

Then, the unbiased label distribution is Ĉ
→1
t P̃t. We addi-

tionally adopt a temperal ensemble method (Laine and Aila
2017) to robustly track estimated label distribution smoothly
with a factor ω and previous estimated shift P̂t→1:

P̂t = Norm
(
P̂t→1 → ω · Ĉ→1

t P̃t

)
(5)

where Norm(·) normalizes the distribution to sum to one,
and we use the Softmax function for this purpose.

3.2 Local Consistent Weighter
Second, to mitigate the adverse effects of shifted covari-
ate distribution, we propose filtering testing data with low-
quality predictions to ensure robust test-time adaptation
and avoiding error accumulation. However, for tabular data,
computing consistency through data augmentation is non-
trivial because our observation indicates that augmentation
for tabular data is not as reliable as it is for image data.

To address this issue, we propose replacing the consis-
tency between a data point and its augmentations with the
consistency between a data point and its neighborhood, un-
der the inspiration of one existing tablar study (Gorishniy
et al. 2024). Specifically, we define the neighborhood set
N(xk, Dt) of each data point xk in current batch Dt mea-
sured by one distance function Dist(·, ·):

N(xk, Dt) =
{
x|Dist(x, xk) < Distt, x ↑ Dt

}
(6)

where Distt = 2
|Dt|(|Dt|→1)

∑|Dt|
i=1

∑|Dt|
j=i+1 Dist(xi, xj) is

the average pair-wise distance in Dt and we adopt L2 dis-
tance as the distance function. Next, we define the predic-
tion of one data point xk is consistent if its soft pseudo-label
vector is close to the average soft pseudo-label vectors in
its neighborhood N(xk, Dt). Then, we define the indication
function I(xk, Dt, εt) to decide whether one data point xk

in current batch Dt is consistent:

I(xk, Dt, εt) =

{
1,

∥∥∥fωt(xk)→
∑

x→N(xk,Dt)
fωt (x)

|N(xk,Dt)|

∥∥∥ < ϑ,

0, Otherwise.

(7)
where εt is the parameters of model at timestamp t, fωt(·)
predicts pseudo-label of data point, and ϑ is a hyperparam-
eter to control the degree of consistency. To additionally en-
sure the robustness of adaptation, we compute the uncer-
tainty of each data point using margin of prediction (Helton
and Johnson 2011) as max f̂ωt(xk) → min f̂ωt(xk). Finally,
our proposed local consistent weighter W(xk, Dt, εt) is for-
mulated as follows:

[
max f̂ωt(xk)→min f̂ωt(xk)

]
· I(xk, Dt, εt) (8)

3.3 Dynamic Model Ensembler
Third, to address the sensitivity issue of adaptation, we em-
ploy the online ensemble learning paradigm (Bai et al. 2022)
to optimize multiple models with different learning rates and
ensemble their outputs through weighted averaging to obtain
the overall robust prediction. Specifically, we maintain M

models using different learning rates during the testing, de-

noted as the set of base models
{
f̂ωi

t

}M

i=1
. Then, model pre-

dictions are weighted according to corresponding loss val-
ues wi ↓ 1→R

i
t(Dt), where Ri

t(Dt) is the loss value of i-th
model f̂ωi

t
evaluated on current batched data Dt and satis-

fies the constraint
∑M

i=1 wi = 1. The final prediction of the
FTAT approach is obtained by weighted ensemble for a data
point x, that is,

∑M
i=1 wi · f̂ωi

t
(x).

4 Experiments
In this section, we first introduce the experimental setup.
Next, we present our empirical results, comparing our FTAT
approach with existing FTTA methods across four bench-
mark datasets. Finally, we conduct an ablation study and
provide further analysis for our proposed method.

4.1 Experimental Setup
Evaluation Protocol. In our experiments on tabular tasks,
we follow the fully test-time adaptation setting, where the
source model is trained on training data and adapted to
shifted test data without any access to the source training
data. Specifically, we train the source model on training data
and select the best model based on the validation set fol-
lowing the TableShift benchmark (Gardner, Popovic, and
Schmidt 2023). Then, FTAT approach and existing FTTA
methods are evaluated on the shifted test set. We select six
common tabular benchmark datasets from the TableShift
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Optimize model predictions using the equation:

where 𝑃! is training label distribution and "𝑃" is
estimated label distribution at timestamp 𝑡. 3. Estimated !𝑃! is tracked smoothly 

throughout the whole time:

1. Biased estimation #𝑃! is computed 
on low-entropy samples:
2. Debias using covariate matrix,
where the 𝑘-th row is defined as:

The test-time adaptation is optimized based on
the entropy minimization objective with sample
weight :

where 𝐴1 indicates the margin of prediction and
𝐴2 is the consistency indicator of prediction.

𝐴1 𝐴2

1. The neighbor set of the sample is defined as follows:

2. The threshold is the average distance between samples in the data 
batch at each timestamp 𝑡:

3. The consistency is defined as the consistency between its prediction 
and the predictions of its neighbors:

The final predictions are defined as the dynamic ensemble of
adapted models using different learning rates:

1. The weight is proportional to the loss 𝑅!"(𝐷!):

2. The weight satisfied the constraint:

Observation 1: Covariate distribution and label
distribution shifts in tabular data hinder the
performance of FTTA methods.

Observation 2: Typical augmentation used in
test-time adaptation is ineffective for tabular data.

Observation 4: Adaptation is sensitive to both
tasks and models for tabular data.

Observation 3: Existing FTTA methods degrades
when dealing with tabular data

▲ Table 1: Performance of the non-adaptation baseline and CoTTA
method with different augmentation strengths σ using the MLP model. The
best performance is in bold.

▲ Figure 1: The label and covariate distribution shifts between training
and testing in tabular data degrade the model performance. The shift
degree is taken logarithm for aesthetic purposes.

▲ Table 2: Performance of the non-adaptation baseline and two
representative FTTA methods using an MLP backbone model. Degraded
performance is underlined.

▲ Figure 2: The performance of FTAT with different learning rates. The
optimal value differs across backbones and tasks. A red star marks the
highest point of each line.

Distribution shifts in testing data render tabular models ineffective. Test-time adaptation offers a potential solution, but …

▲ Table 4: Performance of FTAT approach and comparison methods on 6 datasets using MLP.
▲ Table 5: Ablation study. The performance of the FTAT approach
using MLP backbone when removing different components.

▲ Figure 4: The performance of LAME, ODS, and FTAT
in estimating label distribution.

▲ Table 3: Average performance of each method on 6 datasets using different backbones.

RQ1: Does FTAT method
outperform comparisons
across different datasets
using different backbones?

RQ2: Does each component
contribute to performance in
the FTAT method?

RQ3: Does the FTAT method
accurately estimate the label
distributions?


