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1s not enough to describe model functionalities by textual and statistical information.
i Can we describe generative models functionality for efficient and accurate
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A Figure 1: Comparison between traditional Submission Stage for developers to upload models then assign a model specification.
model selection and CGI problem setting ldentification Stage for users to select suitable models from the hub for their tasks by

uploading example images.

Prompt-Based Model Identification Approach
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Adjusting the specification 1in the matching space according to the requirement and 1dentifies the most suitable model with the highest
similarity score. The weight 1n the function measures the similarity between the specification prompts for model and the textual
descriptions of example 1image, transforming original specifications to task-specific specifications.

Experiments
Methods | Acc.(1) Top-2 Acc.(1) Top-3 Acc.(1) Top-4 Acc.(1) Top-5 Acc.(1) | Ave. Rank(]) | FID Score(]) Model Identification Performance
Baseli 1.5%  3.0% 4.6% 6.1% 7.6% 33.000 23.44 C -
RaKSE/[%le 3 1% 4.6% 6.2% 7 7% 939% 32 014 25 47 Table 1 shows that PMI Slgmﬁcantly OUtperfOTms RKME 1n both accuracy
P 69.2 % 78.1% 82.8 % 85.8 % 88.0% 2.874 18.42 . . . .
- and rank metrics. Table 2 presents results with multiple example 1mages as

A Table 1:Performance of PMI approach . o
. . user requirements, our PMI approach also surpasses existing methods.

User Requirement

Accuracy(1) FID Score(/) i
Baseline RKME Pwm1 Baseline RKME PwMm1

1 image 1.5% 3.1% 69.2% 23.44 2547 18.42
2 images 1.5% 3.1% 84.4% 23.44  25.53 18.17
3 images 1.5% 3.1% 89.7% 23.44 25.53 18.14
4 images 15% 3.2% 92.1% 23.44  25.58 18.21
5 images 1.5% 3.2% 94.0% 23.44 25.61 18.18
6 images 1.5% 3.2% 95.9% 23.44  25.53 18.12

Human & GPT-40 Evaluation

Figure 3 presents the average win rate of generated images by the model
selected from each method voted by human users and GPT-40. The results
show that Our PMI achieves the highest win rate with a large margin

A Table 2:Performance with multiple images

Human Evaluation GPT-40 Evaluation . . . . . .
- indicating that our PMI are more consistent with the user requirements.
S u Visualization
= . . : : .
4 2. We visualize the generated 1images from models identified by each method
.l 1 1 11 in Figure 4, with example images 1n the first column, which shows that our
A Figuro 3: Human & GPT-4o Evaluation A Foured: Viealzaion DM successfully identifies models that match the example images’ style.

v" If you are interested in this paper, feel free to contact Zhi Zhou or Hao-Zhe Tan (zhouz@lamda.nju.edu.cn, tanhz@lamda.nju.edu.cn).

v" This research was supported by the National Natural Science Foundation of China (Grant No. 624B2068, 62306133, 62250069), the
Key Program of Jiangsu Science Foundation (BK20243012), Jiangsu Science Foundation (BG2024036), and the Fundamental
Research Funds for the Central Universities (022114380023).




