

# Identifying Useful Learnwares for Heterogeneous Label Spaces

Lan-Zhe Guo, Zhi Zhou, Yu-Feng Li, Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China



## Learnware = Model + Specification



[Zhou & Tan, SCIS 2023]

The specification enables the model to be identified to reuse according to the requirement of future users

# Learnware Paradigm



## Note

The learnware market is different from model pool like HuggingFace, where models are used "as-what-was-submitted", whereas learnware enables models to be used "beyond-what-was submitted"

## Our Method

### In the submitting stage

- □ Problem: How to assign specifications to the submitted model?
- Basic Idea: The model's specialty should be related to the training data distribution and the model's functionality

#### **Our Solution**

✓ Describe the data distribution via Reduced Kernel Mean Embedding

$$\min_{\beta,U} \left\| \frac{1}{n} \sum_{i=1}^{n} k(Z_i,\cdot) - \sum_{j=1}^{m} \beta_j k(U_j,\cdot) \right\|_{\mathcal{H}}^2 \begin{cases} k(\cdot,\cdot) \text{ is the kernel function} \\ U \text{ is the reduced set} \\ \beta \text{ is the coefficient} \end{cases}$$

✓ Describe the model's functionality with a linear proxy model  $\min_{W} \mathcal{L}_{CE}(ZW,Y) + \mathcal{L}_{KL}(ZW,f(X))$ 

Specification:  $\{\Phi = \{\beta, U\}, W\}$ 

## In the deploying stage

- □ Problem: How to identify useful learnwares given a user's requirements?
- Basic Idea: Matching the user's requirements with the model's specification by considering the class-specific specification explicitly

#### **Our Solution**

✓ Generate RKME and the proxy model's parameter with the user's data

$$\Phi_T = \frac{1}{N_T} \sum_{i=1}^{N_T} k(Z_{T,i},\cdot), \qquad \min_{W_T} \mathcal{L}_{CE}(Z_T W_T, Y_T)$$

- ✓ Identify multiple candidate learnwares via  $\Phi_T$
- For class k in the user's task, select a learnware via  $W_{T,k}$
- ✓ Compute the matching score for each learnware



## What Can Learnware do?

Learnware offers the possibility of addressing issues:

### ✓ Lack of training data

Only small data are needed for learnware search and adaptation

### ✓ Lack of training skills

No need to train a model from scratch

### ✓ Catastrophic forgetting

The model always be accommodated in the market

### ✓ Continual learning

New knowledge with the new submission

### ✓ Data privacy

Only submit models without sharing data

# Experiments

We manually constructed a learnware market with 21 learnwares

Can the most useful model be identified via the specification?

| Settings    | Methods    | Pre@1 | Pre@2 | Pre@3 |
|-------------|------------|-------|-------|-------|
| Homo-       | RKME-basic | 54.54 | 81.82 | 95.45 |
| direct use  | Ours       | 95.15 | 100.0 | 100.0 |
| Homo-       | RKME-basic | 40.90 | 68.18 | 81.82 |
| fine-tuning | Ours       | 81.82 | 90.91 | 90.91 |
| Hetero-     | RKME-basic | 36.36 | 45.45 | 50.00 |
| fine-tuning | Ours       | 59.09 | 63.63 | 68.18 |

➤ How about the correlation between model reuse performance and specification similarity



Kendall's coefficient between performance (X-axis) and similarities (Y-axis)

# Take Home Messages

- Learnware provides a promising way to connect ML models to accomplish different AI tasks
- >Specification plays a pivotal role in the learnware paradigm
- ➤ This paper provides a powerful specification considering both data distribution and model functionality

