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What Can Learnware do?
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B is the coefficient

|Zhou & Tan, SCIS 2023] v'Describe the model’s functionality with a linear proxy model
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The specification enables the model to be identified to W CE ( ) + L (ZW, (X))

reuse according to the requirement of future users
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Learnware Paradigm

In the deploying stage

. '®C " S - A B : OProblem: How to identify useful learnwares given a user’s
™ 0000 E E‘ " ' LA ® | specification Jg —) M e reqUirementS?
Task 1 Model 1 - OO000® |  —— |[Retun|.-n-a=- | s . . ° . .
il L ':“., ---------- | | [1Basic Idea: Matching the user’s requirements with the
020%0 © odg 18 | lqdgt . © u o000 =L model’s specification by considering the class-specific
A@'.? ) 1 I ! Ao ,_‘_\.: ificati . ” . . L
= Lol T Helpful models specification explicitly
Task 2 e e _
E /\‘r_“_:/\ gi‘
Search o000 7
L Learnware C (=1 |Require- \Reusewnh Our Solution
o e E =i | o Submit |™en user’s data
T S [ H .] | e | specification || ’, v'Generate RKME and the proxy model’s parameter with the user’s data
Task C Model C K [spam] [ email rasasoves ﬁ

Nt
1
o — v ’ ‘ r : b = N_Z k(ZT,i,') ’ n]},in Lcg (Zr Wy, Yr)
ri=1 :

@ Developers§ Submitting Stage Deploying Stage

--------------------------------

v'Identify multiple candidate learnwares

via @,
The learnware market 1s different from model pool v'For class k in the user’s task, select a
like HuggingFace, where models are used “as-what- learnware via Wr
was-submitted”, whereas learnware enables models v'Compute the matching score for each
to be used “beyond-what-was submitted” learnware

Learnware offers the possibility of addressing 1ssues:

v' Lack of training data
Only small data are needed for learnware search and adaptation

v Lack of training skills
No need to train a model from scratch

v' Catastrophic forgetting
The model always be accommodated 1n the market

v Continual learning
New knowledge with the new submission

v Data privacy
Only submit models without sharing data

Experiments

We manually constructed a learnware market with 21 learnwares

»Can the most useful model be identified via the specification?

Settings Methods Pre@]l Pre@2 Pre@3
Homo- RKME-basic | 54.54 81.82 95.45
direct use Ours 95.15 100.0 100.0
Homo- RKME-basic | 40.90 68.18 81.82
fine-tuning Ours 81.82 9091 9091
Hetero- RKME-basic | 36.36 4545 50.00
fine-tuning Ours 39.09 63.63 68.18

»How about the correlation between model reuse performance and
specification similarity
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»Learnware provides a promising way to connect ML
models to accomplish different AI tasks

» Specification plays a pivotal role in the learnware paradigm

» This paper provides a powerful specification considering  waitting for
both data distribution and model functionality your feedback




